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Abstract. An adaptation of unitary system principle in fault detection filter design for
continuous-time linear MIMO systems is presented in the paper. The conformation is based
on an enhanced fault residual transfer function matrix with unitary construction and offers
the key advantages on providing high residual sensitivity with respect to faults. Reflecting the
emplacement of singular values in unitary construction, an associated structure of linear matrix
inequalities with built-in structured constraints is outlined to verify the filter stability. The
proposed design conditions are verified by the numerical illustrative example.

1. Introduction
A conventional control for complex systems may results in unsatisfactory performances in the
event of system component malfunctions. To overcome these weaknesses, different approaches
to control system design are developed to tolerate component malfunctions and to maintain
acceptable performances of the system with faults. These control structures are known as fault-
tolerant control (FTC) systems and force the ability to accommodate component failures. In
that sense, research in FTC is subject of a wide range of publications, reflecting faults effect
on control structure reconfiguration [4], [14], fault estimation [16], [20], and fault residuals
generation and analysis [7], [25]. The ideal approach is to construct disturbance-decoupled
residuals, with responsiveness to the faults, as shown in [6].

To scale up accuracy of fault detection, it is eligible to craft residuals with high sensitivity to
faults under robustness to disturbances. One of the options is the use of H∞/H optimization
principle [8], [9]. The restriction of these methods is mainly the necessity of existence of a
full rank direct-feed external gain matrix from faults to residuals [21], which limits them to be
used only to residuals revealing actuator faults. Another approach, based on an unitary system
property, is proposed in [22], [23] where optimization is realized inherently in the sense that if
the singular values of a unitary system are assigned as the magnitude frequency response of a
first-order transfer function then H∞ is the maximum and H is the minimum of the magnitude
of the transfer function. To apply this, Riccati equation based formulation was proposed to
design a stable unitary fault transfer function approximation.

Reflecting this approach in unitary systems design, the issue of this paper is to simplify the
design conditions, mainly because solutions of the introduced Riccati equation form for this
singular task often fail. Searching for accurate parameter matrices of the fault residual state-
space description and to ensure the constructed unitary model closely approximates the actual
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fault residual transfer function matrix, the proposed extended adaptation of the results given in
[13] presents design task which is non-singular with unitary conditions reaching approximately
the theoretical limits for the prescribed set of singular values. To analyze stability of the observer-
based residual filter, the proposed conditions use standard arguments and require to solve only
LMIs with one built-in prescribed constraint, depending on the system output and fault input
matrix structures.

The paper is organized as follows. Placed immediately after Introduction, Sec. 2 presents
the problem statement and Sec. 3 summaries in basic preliminaries the auxiliary lemmas on
the issue of the design task. The enhanced structure of unitary fault residual transfer function
matrix, as well as the set of LMIs describing its stability, is theoretically explained in Sec 4. An
example is provided to demonstrate the proposed approach in Sec. 5 and, finally, Sec. 6 draws
some concluding remarks.

Used notations are conventional so that xT , XT denote transpose of the vector x and matrix
X, respectively, X = XT > 0 means that X is a symmetric positive definite matrix, the symbol
In marks the n-th order unit matrix, ρ(X) and rank(X) indicate the eigenvalue spectrum and
rank of a square matrix X, Y ⊥ designates the orthogonal complement to a rank-deficient matrix
Y , σi(Z) labels the i-th singular value of matrix Z, IR denotes the set of real numbers and IRn,
IRn×r refer to the set of all n-dimensional real vectors and n× r real matrices, respectively.

2. The Problem Statement
The systems under consideration are linear MIMO continuous-time dynamic systems represented
as follows

q̇(t) = Aq(t) +Bu(t) + Ff(t) +Ed(t), (1)

y(t) = Cq(t), (2)

where q(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRm are vectors of the state, input and output variables,
respectively, f(t) ∈ IRp is fault vector and d(t) ∈ IRrd is vector of disturbance. The real matrices
A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n, F ∈ IRn×p, E ∈ IRn×rd are finite values, satisfying the rank
conditions rank(F ) = p, rank(C) = m, p = m, p < n. Moreover, it is supposed that the matrix
V = CF is regular matrix such that V ∈ IRm×m.

Problem of the interest is an unitary representation of the fault residual filter for the system
with the square transfer function matrix of unknown fault input and the residuals. Note, such
construction of an unitary systems to given linear system, with respect to the singular values of
the system transfer function matrix, is non unique task also for square linear systems [13], [22].

3. Basic Preliminaries
3.1. Unitary Linear Systems
If H and E be Krein spaces [2], a continuous linear transformation

(
A B
C D

)
:

H H
⊕ → ⊕
E E

(3)

is called a linear system. The underlying Krein spaceH is called the state space and the auxiliary
Krein space E is called the coefficient space or the external space [19]. The transformation A,
B, C is the main, input and output transformation, respectively, the operator D is called the
external operator. A linear system is said to be unitary if the above matrix is unitary, and the
transfer function G(s) of the linear system is defined by

G(s) = C(sIn −A)−1B +D . (4)
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If A has no imaginary eigenvalues then G(jω) is defined for all ω ∈ IR and the singular values
of the transfer function matrix G(s), evaluated on the imaginary axis, are σi(G(jω)), where
the i-th singular value of the complex matrix G(jω) is the nonnegative square-root of the i-th
largest eigenvalue of G(jω)G∗(jω). The H∞ norm of the transfer matrix G(s) is [5]

∥G∥∞ = sup
ω∈IR

σ1(G(jω)) . (5)

Some reflections can be found, e.g., in [3], [10] and [24].

Definition 1 [22] A stable linear time-invariant system of m-inputs and m-outputs is defined
as a unitary system if the singular values of its transfer function (matrix) G(s) satisfies

σ1 = σ2 = · · · = σm, (6)

where σi is the i-th singular value of G(s).

Defining the unitary system gain matrix equal to V = CF , the following system state
coordinate transformation can be done.

Lemma 1 If for the matrix parameters C and F of the system (1), (2)

C =
[
V 0

]
T , TF =

[
Ip

0

]
, V = CF , (7)

then for m = p the transform matrix T ∈ IRn×n takes the form

T =

[
V −1C

F⊥

]
, (8)

where V −1C ∈ IRp×n, F⊥ ∈ IR(n−p)×n, respectively, and F⊥ is the left orthogonal complement
to F [1], [11].

Proof: Writing the first term of (7) as

C =
[
V 0

] [ T 1

T 2

]
= C , (9)

it is evident that
V T 1 = C, T 1 = V −1C . (10)

Analyzing the second term of (7), i.e.,[
T 1

T 2

]
F =

[
Ip

0

]
, (11)

the following condition results
T 2F = 0, T 2 = F⊥. (12)

Thus, (10), (12) imply (8).
It is easily verified using (9), (12) that

T 1F = V −1CF = V −1V = Ip , (13)

CT−1 =
[
V 0

]
, (14)

respectively.
Note, the last equality imply that, in general, T−1 can be computed only numerically. This

concludes the proof.
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3.2. Structures of Unitary Fault Transfer Matrices
The basic structures of unitary system transfer matrices are introduced by the following lemmas.

Lemma 2 For the system (1), (2) with m = p there exist, for a prescribed positive scalar
so ∈ IR, the matrix Lo ∈ IRn×m such that the fault transfer function matrix takes the form

Gf (s) = G∆(s)Gf∆(s) , (15)

where

Gf∆(s) = C (sIn − (A−LoC))−1 =
V

s+ so
, (16)

G∆(s) = Im +C(sIn −A)−1M , (17)

Lo =

[
soIm +Ao11

Ao21

]
V −1, Ao = TAT−1 =

[
Ao11 Ao12

Ao21 Ao22

]
, M = T−1Lo (18)

and T is given by (8).

Proof: (compare [13], [22]) Since

Gf (s) = C(sIn −A)−1F (19)

is the fault transfer function matrix of dimension m×p, then by using (7), (14), (18) the transfer
function matrix (19) can be rewritten as

Gf (s) = CT−1T (sIn −A)−1T−1TF
= CT−1(T (sIn −A)T−1)−1TF

=
[
V 0

]
(sIn −Ao)

−1

[
Ip

0

]
.

(20)

Defining the matrix product Ao = TMCT−1, where M ∈ IRn×m is a real matrix, then by
exploiting (8), (14) it yields

Ao = TMCT−1 =

[
V −1C

F⊥

]
M

[
V 0

]
=

[
V −1CMV 0

F⊥MV 0

]
(21)

and, accepting the analogy between (18) and (21), it can define

∆Ao = Ao −Ao =

[
Ao11 − V −1CMV Ao12

Ao21 − F⊥MV Ao22

]
. (22)

Setting
Ao11 − V −1CMV = −soIm , Ao21 − F⊥MV = 0 , (23)

where so ∈ IR is a prescribed positive real value, and writing (23) as[
soIm +Ao11

Ao21

]
=

[
V −1C

F⊥

]
MV = TMV = TT−1LoV = LoV , (24)

then, with
M = T−1Lo, (25)

the following yields
Ao = TMCT−1 = LoCT−1, (26)
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∆Ao = Ao −Ao = T (A−MC)T−1 = T∆AT−1, (27)

where
∆A = A−MC = A− T−1LoC (28)

and (22) takes the form

∆Ao =

[
−soIm Ao12

0 Ao22

]
. (29)

Defining the transfer function matrix Gf∆(s) as follows

Gf∆(s) = C(sIn −∆A)−1F , (30)

then with (27) it is

Gf∆(s) = CT−1(sIn − T∆AT−1)−1TF =
[
V 0

]
(sIn −∆Ao)

−1
[
Ip

0

]
. (31)

Since

sIn −∆Ao =

[
(s+ so)Im −Ao12

0 sIn−m −Ao22

]
(32)

and

(sIn −∆Ao)
−1 =

[
(s+ so)

−1Im (s+ so)
−1Ao12(sIn−m −Ao22)

−1

0 (sIn−m −Ao22)
−1

]
, (33)

then, substituting (33) into (31), it can obtain

Gf∆(s) =
[
V 0

]
(sIn −∆Ao)

−1
[
Ip

0

]
=

V

s+ so
, (34)

which implies (16).
The transfer function (30) together with (28) and (19) can be rewritten as

Gf∆(s) = C(sIn −∆A)−1F

= C
(
(sIn −A)(In + (sIn −A)−1MC)

)−1
F

= C(In + (sIn −A)−1MC)−1(sIn −A)−1F ,

(35)

which gives, by using the equality

(FC)−1FC = In , (36)

Gf∆(s) = C(In + (sIn −A)−1MC)−1(FC)−1FC(sIn −A)−1F
= C(In + (sIn −A)−1MC)−1(FC)−1F Gf (s) ,

(37)

as well as, after some manipulations,

Gf∆(s) = C
(
(FC)(In + (sIn −A)−1MC)

)−1
F Gf (s)

= C
(
F (Im +C(sIn −A)−1M)C)

)−1
F Gf (s)

=
(
Im +C(sIn −A)−1M

)−1
Gf (s) .

(38)

Thus, with the notation (17), then (38) implies (15). This concludes the proof.
With existence of such transformation the structure of (20) really means that there exists

the subset of transformed state variables whose dynamics is explicitly affected by the fault f(t)
and the second one, whose dynamics is not affected explicitly by the fault f(t).

Defined by (6), a linear time-invariant system is considered as unitary if all singular values of
its transfer function matrix are equal. Because the construction given in Lemma 2 is not unique,
equivalent structures can be used.
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Lemma 3 An equivalent structure of the fault transfer function matrix of the system (1), (2)
takes the form

Gf (s) = G◦
∆(s)(G

◦
f∆(s)− V ) , (39)

where
G◦

f∆(s) = C(sIn −A+NC)−1(F +NV ) + V , (40)

G◦
∆(s) = Im +C(sIn −A)−1N . (41)

If M = N then
G◦

f∆(s)

s+ so + 1
=

V

s+ so
= Gf∆(s) . (42)

Proof: Considering the associated system (40), it can be written

(sIn −A+NC)−1 = ((sIn −A)(In + (sIn −A)−1NC))−1 = G⋄
∆(s)(sIn −A)−1, (43)

where
G⋄

∆(s) = (In + (sIn −A)−1NC)−1. (44)

Therefore, substituting (43) in (40) leads to

G◦
f∆(s) = C

(
G⋄

∆(s)(sIn −A)−1(In +NC) + In

)
F (45)

and it yields

G◦
f∆(s) = C

(
G⋄

∆(s)((sIn −A)−1 + (sIn −A)−1NC) + In
)
F

= C
(
G⋄

∆(s)((sIn −A)−1 +G⋄−1
∆ (s)

)
F

= CG⋄
∆(s)(sIn −A)−1F + V .

(46)

Since, using the equality (36), it can obtain

CG⋄
∆(s) = CG⋄

∆(s)(FC)−1FC

= C
(
FC(In + (sIn −A)−1NC)

)−1
FC

= C
(
F (Im +C(sIn −A)−1N)C

)−1
FC

= G◦−1
∆ (s)C,

(47)

then the substitution of (47) into (46) gives

G◦
f∆(s) = G◦−1

∆ (s)C(sIn −A)−1F + V = G◦−1
∆ (s)Gf (s) + V . (48)

Thus, (48) implies (39).
Considering that M = N then (17) and (41) implies G◦

∆(s) = G∆(s) and (15) defines
Gf (s) = G∆(s)Gf∆(s). Thus, (39) can be written as

Gf (s) = G∆(s)(G
◦
f∆(s)− V ) = G∆(s)Gf∆(s) , (49)

which gives, with respect to (16),

G◦
f∆(s) = Gf∆(s) + V = V

(
1

s+ so
+ 1

)
=

V

s+ so
(s+ so + 1) , (50)

which gives (42). This concludes the proof.
Note, the relations (42) implies that both transfer functions have the same gain but with

different pole. This property gives the possibility to combine two specific gains in the design
of unitary fault transfer function matrix by the way specified in the following section. Singular
values related properties, such as H2 norm, H∞ norm, as well as H index, can be determined
based on this pole in the FTC structures where the optimization of singular values related
properties are of key importance.
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4. Enhanced Structure of Unitary Fault Transfer Function Matrix
To exploit the properties all structures presented above, the enhanced form of unitary fault
transfer matrix is proposed in the form

G◦
f (s) = C(sIn −A+ (M +N)C)−1V , (51)

where M is introduced in (18) and N is designed in such way that F +NV = 0.
To formulate the stability condition of the unitary system, approximated by the equivalent

transform function matrix (40), the following theorems are given.

Lemma 4 The state-space representation of the enhanced structure of transfer function matrix
(51) in the form of a closed-loop system is

q̇◦d(t) = A◦q◦d(t) +B◦u◦(t) , (52)

y◦(t) = C◦q◦d(t) , (53)

u◦(s) = −K◦q◦(t) = −(MT +NT )q◦(t) , (54)

where the system constraint is

R◦ =

[
0 S

ST −R

]
=

[
0 FV T

V F T −V V T

]
≥ 0 (55)

and the matrix parameters are

A◦ = AT , B◦ = CT , C◦ = F T , (56)

MT = LoTT−T , NT = −V −TF T . (57)

Thus,
q̇◦d(t) = A◦

dcq
◦
d(t), A◦

dc = A◦ −B◦K◦ . (58)

y◦(t) = C◦q◦d(t) . (59)

Proof: Considering that
F +NV = 0 (60)

then
N = −FV −1 (61)

and using the Laplace transform property [15], then (51) conditioned by the design constraint
(60) implies

q̃d(s) = (sIn −A+MC +NC)−1V f̃(s) = (sIn −A+MC − FV −1C)−1V f̃(s) , (62)

Writing in the dual state-space form [17], the response (62) reflects a free-response of the
system

q̇◦d(t) = (AT −CTM +CTV −TF T )V f(t) , (63)

y◦(t) = F Tq◦d(t) (64)

and can be interpreted as the response of the closed-loop system (52)-(54), (56), (57). It is
evident that this system should be stable under constraint (64) for N of structure given in (61).

Multiplying the right side of (60) by V T leads to

FV T +NV V T = 0 , (65)
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which implies
N = −FV T (V V T )−1. (66)

Since pre-multiplying the right side of (66) by V F T and then using (60) gives

FV T (V V T )−1V F T = −NV F T = FF T ≥ 0 (67)

and because a dual state-space description (53), (56) implies

y◦T (t)y◦(t) = q◦T (t)C◦TC◦q◦(t) = q◦T (t)FF Tq◦(t) , (68)

it is evident that (67) is the constraint given on q◦(t).
Thus, using the Schur complement property, (67) implies the quadratic constraint (55). This

concludes the proof.

Theorem 1 The equivalent system (52)-(57) is stable if there exists a symmetric positive
definite matrix P ∈ IRn×n such that

P = P T > 0 , (69)[
(A−MC + FV −1C)P + P (A−MC + FV −1C)T PCT + FV T

CP + V F T −V V T

]
< 0 (70)

and the common gain matrix is

K◦ = −M −N = −M + FV −1. (71)

Proof: Introducing the notation

q•T (t) =
[
q◦Td (t) u◦T (t)

]
, (72)

the Lyapunov function candidate can be considered in the form

v(q•(t)) = q◦Td (t)Pq◦d(t) +

∫ t

0
q•T (v)R◦q•(v)dv > 0 , (73)

where P ∈ IRn×n is a symmetric, positive definite matrix and R◦ ∈ IR(n+m)×(n+m) is given in
(55).

Therefore, the time derivative of (73) can be written as

v̇(q•(t)) = q̇◦T (t)Pq◦(t) + q◦T (t)P q̇◦(t) + q•T (t)R◦q•(t) < 0 , (74)

which, by substituting (52), takes the form

v̇(q•(t)) = q•T (t)R◦q•(t) + (A◦q◦d(t) +B◦u◦(t))TPq◦d(t) + q◦Td (t)P (A◦q◦d(t) +B◦u◦(t)) < 0 .
(75)

Then, using (72), the inequality (75) can be written as

v̇(q•(t)) = q•T (t)P •q•(t) < 0 , (76)

where

P • =

[
PA◦ +A◦TP PB◦ + FV T

B◦TP + V F T −V V T

]
< 0 . (77)
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Constructing the closed-loop system matrix

A◦
dc = A◦ −B◦K◦ = AT −CT (MT +NT ) , (78)

which, by using (57), is of the form

A◦
dc = AT −CTMT +CTV −TF T , (79)

it is evident that
A◦T

dc P = (A−MC + FV −1C)P (80)

and
PB◦ = PCT . (81)

Thus, replacing A◦ in (77) by A◦
c and using (81), the matrix inequality (77) takes the form (70).

This concludes the proof.

5. Unitary Fault Detection Filter
Writing the dual form of the state-space description (58), (78) in the direct form, it is obtained

q̇◦(t) = A◦T
dc q

◦(t) , (82)

A◦T
dc = A◦T −K◦TB◦T = A− (M +N)C . (83)

Denoting
e(t) = q◦(t) , J = M +N , (84)

it yields
ė(t) = (A− JC)e(t), (85)

which is the autonomous equation of the estimation error of Luenberger observer to the nominal
noise-free system (1), (2), defined in the form [11]

q̇e(t) = Aqe(t) +Bu(t) + JC(q(t)− qe(t)) , (86)

Introducing e(t) = q(t)− qe(t), then with (1), (2) and (86) it yields

ė(t) = Aq(t) +Bu(t) + Ff(t) +Ed(t)−Aqe(t)−Bu(t)− JC(q(t)− qe(t))
= (A− JC)e(t) + Ff(t) +Ed(t)

(87)

ẽ(s) = (sIn − (A− JC))−1(F f̃(s) +Ed̃(s) (88)

respectively, where ẽ(s), f̃(s), d̃(s) stand for the Laplace transform of the n dimensional observer
error vector, the m dimensional fault vector and the p dimensional disturbance vector.

Designing the fault residuals as

r(t) = V −1Ce(t) , r̃(s) = V −1Cẽ(s) , (89)

then the residual transfer function matrices of the fault and the disturbance are

Gf (s) = V −1C(sIn − (A− JC))−1F , (90)

Gd(s) = V −1C(sIn − (A− JC))−1E . (91)

It is evident that with J of the structure (84), and designed by (57), Gf (s) is an unitary transfer
function matrix with optimized singular values related properties.
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6. Illustrative Example
The considered unstable system is represented by the model (1), (2) with the parameters

A =


1.380 −0.208 6.175 −1.576
0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 , B =


0.000 0.000 0.000
5.679 −1.000 0.000
1.136 −3.146 1.324
1.136 0.000 3.496

 , E =


1.400
1.504
2.233
0.610

 ,

B = F , C =

 4 0 1 0
0 0 0 1
0 1 0 0

 , V = CF =

 1.136 −3.146 1.324
1.136 0.000 3.496
5.679 −1.000 0.000

 , det(V ) ̸= 0.

The parameters of the matrix T were computed as follows

V −1C =

 −0.2331 0.1833 −0.0583 0.0221
−1.3237 0.0411 −0.3309 0.1253
0.0757 −0.0596 0.0189 0.2789

 ,

F⊥ =
[
−1.0000 0.0000 0.0000 0.0000

]
,

that is

T =


−0.2331 0.1833 −0.0583 0.0221
−1.3237 0.0411 −0.3309 0.1253
0.0757 −0.0596 0.0189 0.2789

−1.0000 0.0000 0.0000 0.0000

 .

Computing (18) and separating the blocks of the matrix A◦ give the results

Ao11 =

 −6.1156 4.1078 −0.9991
−11.1342 19.0383 −8.0335

8.6811 −3.7656 −1.2707

 , Ao12 =

 −3.8116
−21.0651

2.7614

 ,

Ao21 =
[
−4.0432 19.2186 −2.6660

]
, Ao22 =

[
−23.3200

]
and so, choosing so = 22, it was obtained using (18) and (61) that

Lo =


−2.3040 0.5868 3.1405
−13.0844 2.6574 0.1252

1.1328 5.5004 0.2018
−6.1750 1.5760 0.2080

 , M =


6.1750 −1.5760 −0.2080
0.0000 0.6750 17.7100
15.3460 5.8930 4.2730
1.3430 19.8960 4.2730

 ,

N =


0 0 0
0 0 −1

−1 0 0
0 −1 0

 , J =


−6.1750 1.5760 0.2080
0.0000 −0.6750 −18.7100

−16.3460 −5.8930 −4.2730
−1.3430 −20.8960 −4.2730

 ,

respectively. Thus, constructing the observer system matrix

Ae = A− JC =


−23.3200 0.0000 0.0000 0.0000

0.5810 −23.0000 0.0000 0.0000
−64.3170 0.0000 −23.0000 0.0000
−5.3240 0.0000 0.0000 −23.0000

 ,

it is evident that the eigenvalues spectrum of Ae is

ρ(Ae) =
{
−23.32 −23.00 −23.00 −23.00

}
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Figure 1. Singular values of the original
system.
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Figure 2. Singular values of the unitary
approximation of the system.

and the steady-state value of the residual transfer function matrices are

Gf (0) = V −1CA−1
e F = −

 0.0435 0.0000 0.0000
0.0000 0.0435 0.0000
0.0000 0.0000 0.0435

 ,

Gd(0) = V −1CA−1
e E = −

 0.0027
0.0027

−0.0517

 .

For completeness it was verified that in sense of Lyapunov stability there exist the positive
definite matrix

P =


3.5370 0.2172 −1.1139 0.1226
0.2172 0.5332 −0.1550 −0.0333

−1.1139 −0.1550 0.8587 −0.1443
0.1226 −0.0333 −0.1443 0.6646

 .

such that (69)-(71) are affirmative.
Note, using the coordinate transformation defined by the transform matrix (8), the block

matrix Ao22 in the matrix structure (18) is uncontrollable in the closed-loop structure (52)-(54)
which describe the equivalent unitary systems. That means, the eigenvalues of Ao22 determine
the unprescribed subset of singular eigenvalues of ρ(Ae) (compare the value Ao22 = −23.3200
and the first singular value of ρ(Ae) in this example).

The results are closer to the theoretical expectations, and are simpler than those that have
been published in [22].

7. Concluding Remarks
Based on the singular value approach a simpler method, but of the same precision, for unitary
approximation of unknown fault transfer function matrix for continuous-time linear systems
is introduced in the paper. Presented version is derived in terms numerical procedures to
manipulate dynamics of the residual fault transfer function matrix. Formulated in sense of
the second Lyapunov method and expressed through LMIs, stability conditions guaranteing
the asymptotic convergence of unitary system observer state are derived over and above. The
numerical simulation results show very good approximation performances.
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