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Abstract. This paper deals with the application of state space neural network model to design
a Fault Detection and Isolation diagnostic system. The work describes approach based on multi-
model solution where the SIMO process is decomposed into simple models (SISO and MISO).
With such models it is possible to generate different residual signals which later can be evaluated
with simple thresholding method into diagnostic signals. Further, such diagnostic signals with
the application of Binary Diagnostic Table (BDT) can be used to fault isolation. All data used
in experiments is obtain from the simulator of the real-time laboratory stand of Modular Servo
under Matlab/Simulink environment.

1. Introduction
Recently, it has been observed an increasing development of the Fault Diagnosis (FD) methods
for the Fault Tolerant Control (FTC) system desing purposes [3]. It is straightly connected to
the advantages of the systems which can maintain current performance as close to the desirable
one, and preserve stability conditions in the presence of faults [17]. Faults and equipment failures
directly affect the performance of the control system and can result in large ecomomic losses and
violation of the safety regulations. During the fault tolerant control system design, the basic
problem is the early detection and isolation of possible faults. The proper isolation of the faults
is crucial during FTC system design. The reason behind that statement is that the different
control strategy needs to be applied in case of sensor faults and completely different behaviour is
needed when actuator fault occurs. The main objective here is to have FDI methods as fast and
as accurate as possible. Such assumptions are crucial to further design a control system which
can provide the acceptable corrections of the control signal in case of fault. The paper focuses
on two aspects of the FDI design, first is stage of system modelling and second, the application
of the process models to residual signal generation and evaluation. One of the tools which are
heavily exploited in this task are Artificial Neural Networks (ANN) [2, 14, 15]. In this work
to construct the models of the system the so called State Space Neural Networks (SSNN) are
applied. Such neural model of the system was successfully applied to Model Predictive Control
of Twin Rotor Aerodynamical System in the previous work of the author [4]. The SSNN model
is then used to carry out the fault detection by analysing the residual and fault isolation is done
with the application of Binary Diagnostic Table. The methodology presented in the paper is
tested on the example of a Modular Servo in case of both actuator and sensor faults.
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The paper is organized as follows, Section 2 presents a general desciption of the Modular
Servo System and provides information about faulty scenarios considered. The state space neural
networks are described in Section 3. Section 4 presents a FDI algorithm, while experimental
results are included in Section 5.

2. Modular Servo
In this work a Modular Servo System (MSS) laboratory stand is considered [7]. The main
concept of the MSS is to create a rapid and direct path from control system design to hardware
implementation. The MSS supports the real-time design and implementation of advanced control
methods using MATLAB/Simulink enviroment. The MSS consists of the Inteco servomechanism
and open-architecture software environment for real-time control experiments. A scheme of
considered DC motor is presented in Fig. 1.
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Keωv(t)

γ = Kmi

Figure 1. Diagram of DC motor.

The system is described by two classical equations, the electrical one:

v(t) = Ri(t) +Keω(t) (1)

and mechanical as follows:
Jω̇(t) = Kmi(t)− βω(t) (2)

where v(t) is the input voltage, i(t) is the armature current, ω(t) is the angular velocity of the
rotor, R is the resistance of armature winding, J is the moment of inertia of the moving parts,
β is the damping coefficient due to viscous friction, Keω(t) is the back EMF and KM i(t) is the
electromechanical torque.
The system used in this paper is described by the following nonlinear state space equations:

ẋ1 = x2

ẋ2 = c(u− g(x2))
(3)

where state variable x1 and x2 are the angle α (position of the shaft) and angular velocity ω,
respectively. The control applied is in PWM signal form so it is assumed that dimensionless
control signal u is scaled input voltage u(t) = v(t)/vmax and it satisfies |u(t)| ≤ 1. The function
g is the inverted steady state characteristics of the system, which needs to be determined
experimentally.

The system can be classified as a multivariable (SIMO) because it has two measurable state
variables and one control variable. This allows to simulate three different fault scenarios which
are described in the Table 1.

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012034 doi:10.1088/1742-6596/659/1/012034

2



Table 1. Specification of faulty scenarios.

Fault Description Type

f1 DC motor power loss multiplicative (0.7)
f2 Tacho-Generator failure additive (-30)
f3 Angle positioner failure additive (-30)

3. State Space Neural Network
The crucial part in FDI design process is the model of the plant which is used for residual
generation. In this work the State Space Neural Network (SSNN) which are a very important
class of dynamic neural networks are used [16, 12]. The structure of such network is depicted
in Fig. 2. The output of the hidden layer is fed back to the input layer through a bank of unit
delays. The number of unit delays determines the order of the model. In general, a user decides
how many neurons are used to produce feedback.

bank of
unit
delays

non-linear
hidden
layer

linear
output
layer

bank of
unit
delays

u(k)

x̄(k)

x̄(k+1)

ȳ(k+1) ȳ(k)

Figure 2. Block scheme of the state space neural network.

Let u(k) ∈ Rn be the input vector, x̄(k) ∈ Rq - the output of the hidden layer at time k, and
ȳ(k) ∈ Rm - the output vector. The state space representation of the neural model is described
by the equations

x̄(k + 1) = ḡ(x̄(k),u(k))

ȳ(k) = Cx̄(k)
, (4)

where ḡ(·) is a nonlinear function characterizing the hidden layer, and C represents synaptic
weights between hidden and output neurons. Introducing the weight matrix between input and
hidden layers W u and the matrix of recurrent links W x, the representation (4) can be rewritten
in the following form:

x̄(k + 1) = h(W xx̄(k) + W uu(k))

ȳ(k) = Cx̄(k)
, (5)

where h(·) stands for the activation function of the hidden neurons. In the most cases,
the hyperbolic tangent activation function is selected giving pretty good modelling results.
For the state space model the outputs of hidden neurons which constitute feedbacks are, in
general, unknown during training. Therefore, state space neural models can be trained only
by minimizing the simulation error. If state measurements are available, the training can
be carried out much easier using the series-parallel identification scheme, similarly as for the
external dynamic approach (the feedforward network with tapped delay lines). In spite of this
inconvenience, state space models have a number of advantages, contrary to other recurrent
neural networks ([13], [18]):
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• The number of states (model order) can be selected independently from the number of
hidden neurons. In the recurrent networks, e.g. Williams-Zipser, Elman, locally recurrent
networks, the number of neurons directly influences the model order, which significantly
impedes the modelling phase.

• Model states are easily accessible from the outside (they feed the network input). This
property can be useful when state measurements are available at some time instants.

• State space neural models are useful in the fault tolerant control framework as they can be
used to determine the approximation of a fault effect. As the fault effect can be represented
in the state space one can handle different kind of faults including multiplicative and additive
ones.

Presented advantages of State Space Neural Networks make such structure very interesting and
promising in the solving the fault compensation problem. Also the class of nonlinear state space
models is strongly evaluated in different scientific approaches as a nominal model (e.g [9]).

4. Fault Detection and Isolation
In this paper the FDI approach is based on the residual evaluation. To achieve the goal of early
detection and proper localisation of faults it is needed to design a process model. In this paper
both the sensor and actuator faults are taken into consideration. To distinguish one group from
another it is proposed to use a multi-model solution. To solve this problem let us consider a
nonlinear dynamic system governed by the following state equation:

x(k + 1) = g(x(k),u(k))

y(k) = Cx(k),
(6)

where g(·, ·) is a process working at the normal operating conditions, x(k) is a state vector and
u(k) is the control. In case of the considered servomechanism system, the output y(k) consists
of two variables – the position angle α and angular velocity ω. For diagnostic purposes it is
proposed to decompose this SIMO system into the following SISO and MISO neural models:

xua(k + 1) = gua(xua(k), u(k))

yua(k) = Cxua(k).
(7)

which models the relation between voltage input u and angle position of the rotor shaft yua,
through identified with SSNN function gua. This model further will be refereed as model 1 or
input-angle model (uamodel).

xuv(k + 1) = guv(xuv(k), u(k))

yuv(k) = Cxuv(k)
(8)

which models the relation between voltage input u and angular velocity of the rotor yuv, through
identified with SSNN function guv. This model further will be refereed as model 2 or input-
velocity model (uvmodel).

xva(k + 1) = gva(xva(k), ω(k))

yva(k) = Cxva(k)
(9)

which models the relation between measured angular velocity ω and angle position of the rotor
shaft yva, through identified with SSNN function gva. This model further will be refereed as
model 3 or velocity-angle model (vamodel).

xuav(k + 1) = guav(xuav(k), u(k), α(k))

yuav(k) = Cxuav(k)
(10)
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which models the relation between voltage input u together with measured angular velocity ω
and angle position of the rotor shaft yuav, through identified with SSNN function guav. This
model further will be refereed as model 4 or input-angle-velocity model (uavmodel).

xuva(k + 1) = guva(xuva(k), u(k), ω(k))

yuva(k) = Cxuva(k)
(11)

which models the relation between voltage input u together with measured angle position of the
rotor shaft α and angular velocity of the rotor yuva, through identified with SSNN function guva.
This model further will be refereed as model 5 or input-velocity-angle model (uvamodel).

The models are realised by the means of the SSNN and are summarised in the Table 2.
Next, the angular velocity ω and angle position α can be measured as the system outputs and

name inputs outputs

model 1 (uamodel) u α
model 2 (uvmodel) u ω
model 3 (vamodel) ω α

model 4 (uavmodel) u,α ω
model 5 (uvamodel) u,ω α

Table 2. Diagnostic state space models

used for the residual calculation as follows:

r1(k) = α(k)− yua(k) (12)

r2(k) = ω(k)− yuv(k) (13)

r3(k) = α(k)− yva(k) (14)

r4(k) = ω(k)− yuav(k) (15)

r5(k) = α(k)− yuva(k) (16)

To evaluate calculated residuals to fault detection and isolation, in this paper a simple
thresholding method is applied [1]. The diagnostic signals si for each model are defined as
follows:

si =

{
0 : ri > Tli ∧ ri < Tui
1 : ri < Tli ∨ ri > Tui

, (17)

where i ∈ {1, 2, 3, 4, 5} and Tui, T li are upper and lower thresholds respectively. The thresholds
are calculated using the so-called 3σ method using collected data during work of the system in
nominal conditions.

Finally, the BDT can be created and applied for fault detection and isolation [8]. The designed
BDT is presented in Table 3.
When all diagnostic signals are equal to the assumed level for the specific fault, then the fault

alarm is raised. If any diagnostic signal is equal 1 then a unknown fault is signalled.
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Table 3. Binary Diagnostic Table
s1 s2 s3 s4 s5

f1 1 1 0 1 1
f2 0 1 1 1 1
f3 1 0 1 0 1

5. Experimental results
5.1. Neural Modelling
The first step in the design of fault diagnosis system is the process modelling. The proper model
is crucial for residual generation and evaluation. As was shown in section 4 in this paper, the
approach based on multiple models is used. The models described in section 4 were designed by
the means of the SSNN. To design the training data multiple sinusoids were mixed with random
signals. Such control signal gives a very rich data which characterise the whole operating range
of the plant. The angular velocity operating range was equal to ±200 and angle was assumed
as ±2000 rads. The collected outputs signals from encoder sensor and tacho-generator were
normalised before the training process. The obtained data were divided into training and testing
sets and resampled from 0.01s to 0.1s. During normal work of FDI system models outputs are
linearly interpolated to match the sampling of the plant. The networks were trained for 100
epochs using Levenberg-Marquardt algorithm and the selection of the proper network structure
is based on the criterion of the Sum of Squared Errors (SSE) index. The tested structures of
specific models and training results are shown in table 4. The best structures and noted with
frames.

Table 4. Selection of neural network structures.
Model 1 Model 2 Model 3 Model 4 Model 5
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1 2 126.2 279.4 1.58 1.80 0.18 61.21 1.58 1.80 0.1849 86.9
1 3 92.5 297.2 0.742 1.9e+04 0.0057 0.20 1.35 1.87 0.049 0.080
1 4 198.6 278.2 0.786 7.1e+03 0.0048 0.0256 0.26 1.54 0.1279 103.4
1 5 140.6 220.8 0.582 1.01 0.0037 0.11 0.108 0.220 0.0042 0.0593
1 6 124.3 198.0 0.652 3.3e+03 0.0041 0.12 0.107 0.221 0.2944 68.5
2 2 87.1 122.6 2.30 3.13 0.13 14.74 2.19 3.55 0.1525 19.5
2 3 0.77 1.47 0.0384 0.0729 0.0014 0.013 1.95 3.19 0.0103 6.55

2 4 0.64 0.72 0.0295 0.057 6.9e-04 0.0070 1.42 2.61 0.0017 0.0179

2 5 0.73 1.40 0.0299 0.0494 5.5e-04 6.7e-04 0.024 0.075 5.1e-04 0.0976

2 6 1.24 87.01 0.0397 0.0961 8.6e-04 9.6e-04 0.023 0.12 0.0010 0.0291

3 3 86.0 102.23 2.01 2.62 0.034 23.02 0.12 0.66 3.6993 216.1
3 4 1.12 14.40 0.28 0.402 11.35 252.13 1.64 3.36 1.4086 283.7

3 5 84.8 105.08 0.13 0.23 3.4e-04 0.0068 0.58 2.16 0.1877 95.24

3 6 8.3e+3 8.2e+03 3.34 2.2e+03 0.0018 0.0164 1.39 1.62 0.4683 162.05

Summarising the results, the best structures used in further experiments were shown in the
Table 5.

5.2. Fault Management
The designed models of the plant allows to carry out the FDI experiments in which system is
controlled by PID controller, tuned by the manufacturer of the plant. The control task was
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Table 5. Selected neural network structures
Model order No neurons

model 1 2 4
model 2 2 5
model 3 2 5
model 4 2 5
model 5 2 4

to follow the reference angle signal, which changes between two values. The models are used
for residual generation and simple thresholding method is used to evaluate residuals to obtain
diagnostic signals. The calculated thresholds together with means and standard deviations are
shown in Table 6. Three faults scenarios – one actuator and two sensor which are described in

Table 6. Thresholds calculation results.
mean σ Tl Tu

model 1 0.0132 7.8625 -23.5743 23.6006
model 2 0.2975 3.2198 -9.3619 9.9568
model 3 -0.0235 0.0165 -0.0730 0.0260
model 4 0.4268 3.2956 -9.4601 10.3137
model 5 -0.0563 0.2087 -0.6823 0.5697

Table 1, were considered. As shown in Figs. 3, 4 5 and 6 the actuator fault f1 is very minimal
and do not influence the work of the system as the PID controller compensate it easily (faults of
greater magnitude should be diagnosed with even higher efficiency). In case of tacho-generator
fault f2 it does not influence the work of the control system but in the case of encoder fault f3
which is used as the control feedback the fast detection and appropriate action is crucial.
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Figure 3. Outputs of the system and models in nominal conditions.

All of faults were introduced at the 14th second of simulation. The residuals were calculated
and together with thresholds are presented in Figs. 7 and 8.

In all three scenarios as one can see the diagnostic system worked quite efficiently and it was
easy to detect and isolate fault. The performance indexes in the form of false detection rate (
rfd), time of fault detection (tdt), true fault detection rate (rtd), time of fault isolation (tti), false
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Figure 4. Outputs of the system and models in case of f1.
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Figure 5. Outputs of the system and models in case of f2.
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Figure 6. Outputs of the system and models in case of f3.

isolation rate (rfi) and true isolation rate (rti) were calculated according to formulas defined
in [13]. Indexes are shown in Table 7. The obtained results are quite satisfying, especially in
case of sensor faults where fault detection is instant and isolation rate is over 99%. Such high
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Figure 7. Residuals generated and thresholds with model 1 (a), model 2 (b), model 3 (c),
model 4 (d) and model 5 (e) in nominal conditions and with model 1 (f), model 2 (g), model 3
(h), model 4 (i) and model 5 (j) in case of fault f1.

Table 7. Diagnostic performance indexes
rfd tdt rtd tti rfi rti

no fault 0.0032 - - - - -
f1 0.0043 37 0.9673 164 0 0.2861
f2 0.0043 1 1 4 0 0.9982
f3 0.0043 1 1 2 0 0.9973

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012034 doi:10.1088/1742-6596/659/1/012034

9



0 5 10 15 20 25
−100

−50

0

50

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−50

0

50

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25

0

2

4

6

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−50

0

50

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25

0

2

4

6

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−100

−50

0

50

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−50

0

50

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−30

−20

−10

0

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−50

0

50

fault introduction

time (s)

re
si

du
al

0 5 10 15 20 25
−30

−20

−10

0

fault introduction

time (s)

re
si

du
al

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

Figure 8. Residuals and thresholds generated with model 1 (a), model 2 (b), model 3 (c),
model 4 (d) and model 5 (e) in case of fault f2 and with model 1 (f), model 2 (g), model 3 (h),
model 4 (i) and model 5 (j) in case of fault f3.

performance is caused mostly by the model 3 (vamodel) which reacts very fast with great change
of residual. The actuator fault is also immediately detected (after 0.3s) but the isolation is quite
poor with only 28% rate. This problem can be addressed with the application of diagnostic
submatrices or neural classifier and our future work will consider this approaches. The last
conclusion concerns false alarms which rate is very low but such events can be disastrous in
future design of fault tolerant control where inappropriate fault compensation action can occur.
This will be addressed in future work with robust fault detection by application of the so-called
MEM technique (model error modelling) used earlier by the authors in [6, 5]. What is most
important the fault false isolation rate in each scenario is equal to 0 so that means the faults

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012034 doi:10.1088/1742-6596/659/1/012034

10



are no mistaken with each other.

6. Conclusions
In this work the complete sensor and actuator fault detection and isolation diagnostic system
was designed. As it was shown the SSNN can be used very easily and successfully in application
of such diagnostic system. The obtained residual signals allows for very fast and accurate fault
detection. The so-called methods of simple thresholding and Binary Diagnostic Tables are very
important tools in the process of residual evaluation and fault isolation.

Our future work will be focused on achieving the better results by the replacement of the
simple thresholding method by robust fault detection with MEM in the diagnostic system. Also,
more accurate fault isolation by applying diagnostic submatrices will be investigated.
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