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Abstract. This paper analyses a functional control of the Robotino. The proposed control
strategy considers a functional decoupling control strategy realized using a geometric approach
and the invertibility property of the DC-drives with which the Robotino is equipped. For a
given control structure the functional controllability is proven for motion trajectories of class
C3, continuous functions with third derivative also being continuous. Horizontal, Vertical and
Angular motions are considered and the decoupling between these motions is obtained. Control
simulation results using real data of the Robotino are shown. The used control which enables
to produce the presented results is a standard Linear Model Predictive Control (LMPC), even
though for sake of brevity the standard algorithm is not shown.

1. Introduction
This paper presents a systematic procedure for obtaining the decoupling controllability between
horizontal, vertical and angular motions and their functional controllability. Here in this con-
tribution the functional decoupling problem is investigated and roughly speaking, it consists of
achieving motion tracking with no error variables transients. To achieve a decoupling effect a
feedback control law is needed together with a feed-forward regulator. The functional control-
lability represents a structural property of the system which must be proven. In this paper a
decoupled and functional controller is obtained. The relevance of the motion functional control-
lability of the Robotino control is justified by the necessity of very fast and very precise loops
of acceleration control counteracting errors in displacements caused by possible disturbance ac-
tions. In the past three decades, research on the geometric approach of dynamic systems theory
and control has allowed this approach to become a powerful and a thorough tool for the analysis
and synthesis of dynamic systems [1], [2], [3]. In [4], a robust decoupling controller using an
algebraic state input feedback is presented, while this paper presents a robust decoupling con-
troller using an algebraic output-input feedback. The goal of this paper is to propose a complete
constructive procedure for the design of a decoupling controller. In Robotino case, to achieve a
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decoupling between Horizontal, Vertical and Angular motions a preselecting field law is needed
together with a feed-forward regulator. The paper is organised in the following way: Section

Figure 1. Robotino in action on the pitch.

2 presents a possible model of the Robotino. Section 3 shows the decoupling strategy using
the geometric approach. Section 4 presents the functional controllability problem in the case of
Robotino. At the end, numerical computer simulations, considering real data of the Robotino,
are shown using Model Predictive Control (MPC), even though per sake of brevity this standard
algorithm is not discussed.

2. Mechanical and Electrical Model Description
In Fig. 2 a diagram with the representation of the forces in the considered system is shown. If

Figure 2. Mechanical schematic diagram of Robotino.

state vector X(t) is defined as, x(t) and y(t) positions of the center of mass of the system and its
velocities, ẋ(t) and ẏ(t), moreover, considering the angular dynamics with its angular position
θ(t) and its velocity θ̇(t), then the following system is derived:{

Ẋ(t) = AX(t) + g(θ)F(t)
O(t) = CX(t),

(1)
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with

X(t) =



x(t)

ẋ(t)

y(t)

ẏ(t)

θ(t)

θ̇(t)


, Ẋ(t) =



ẋ(t)

ẍ(t)

ẏ(t)

ÿ(t)

θ̇(t)

θ̈(t),


(2)

matrix

A =



0 1 0 0 0 0

0 −kv
M 0 0 0 0

0 0 0 1 0 0

0 0 0 −kv
M 0 0

0 0 0 0 0 1

0 0 0 0 0 −kθ
J

 , (3)

which for sake of notation can be written as follows:

A =

Ax2×2 02×2 02×2

02×2 Ay2×2 02×2

02×2 02×2 Aθ2×2

 , (4)

where Ax2×2, Ay2×2 and Aθ2×2 are the minor matrices of A describing the x, y and θ dynamics
of the system. Matrix C represents the output matrix and can be written in the following way:

C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , (5)

where the following notation is assumed:

Cx =
[
1 0 0 0 0 0

]
, (6)

Cy =
[
0 0 1 0 0 0

]
, (7)

Cθ =
[
0 0 0 0 1 0

]
. (8)

Field g(θ) is as follows:

g(θ) =



0 0 0

sin(θ)
M

sin( 2
3
π+θ)

M − sin( 2
3
π−θ)

M

0 0 0

cos(θ)
M

cos( 2
3
π+θ)

M

cos( 2
3
π−θ)

M

0 0 0
a b c


(9)

where

a =
sin(θ) · l · sin(θ) + cos(θ) · l · cos(θ)

J
,
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b =
sin(23π + θ) · l · cos(π6 + θ)

J
+

cos(23π + θ) · l · sin(π6 + θ)

J
(10)

and

c =
− sin(23π − θ) · l · − cos(π6 − θ)

J
+

cos(23π − θ) · l · sin(π6 − θ)

J
(11)

and force input vector signal F(t) =

F1(t)
F2(t)
F3(t)

 in which F1(t) = Kmi1(t)/r, F2(t) = Kmi2(t)/r

and F3(t) = Kmi3(t)/r, where Km represents the motor constant, r the radius of the wheels
and variables i1(t), i2(t) and i3(t) are the currents of the three DC-electrical drives. In fact,
the Robotino consists of 3 DC electrical drives that power the three omniwheels. The models of
these three DC-drives are reported below.

di1(t)
dt

dω1(t)
dt

di2(t)
dt

dω2(t)
dt

di3(t)
dt

dω3(t)
dt


=



−R
L −Km

L 0 0 0 0

Km
J −K

J 0 0 0 0

0 0 −R
L −Km

L 0 0

0 0 Km
J −K

J 0 0

0 0 0 0 −R
L −Km

L

0 0 0 0 Km
J −K

J


·



i1(t)

ω1(t)

i2(t)

ω2(t)

i3(t)
ω3(t)


+



1
L 0 0

0 0 0

0 1
L 0

0 0 0

0 0 1
L

0 0 0


·


Uinp1(t)

Uinp2(t)

Uinp3(t)

 ,

(12)
where Uinp1(t), Uinp2(t) and Uinp3(t) represent the input voltage of the DC-drive, L is the
inductance, R is the resistance, J represents the motor inertia factor, Km is the motor moment
and finally K can be seen as the friction factor. This model is important in realising the
simulation and is a basis for the inverted drive used in the control strategy.

3. Design of a Decoupling Controller
This section describes the design of a decoupling controller with respect to the x-y and θ mo-
tions above defined. A geometric approach is used in this analysis. Since the geometric relations
depend on the rotational position (θ), the forces actuated by the three DC drives are needed to
move in a certain direction and they may be difficult to be obtained.

Definition 1 A control law for the dynamic system (1) is decoupling with respect to the reg-
ulated outputs x(t), y(t), and θ(t), if there exist partitions Fx(t), Fy(t), and Fθ(t) of the input
vector F(t) such that for zero initial conditions, each input F(·)(t) (with all other inputs, iden-
tically zero) only affects the corresponding output x(t), y(t), or θ(t). �

It it to be shown that there exists a decoupling and stabilizing state feedback field D(θ), along
with three input partition fields Tx(θ), Ty(θ), and Tθ(θ) such that, for the dynamic triples

(Cx, A+ g(θ)D(θ), g(θ)F1(t)) ,
(Cy, A+ g(θ)D(θ), g(θ)F2) ,

(Cθ, A+ g(θ)D(θ), g(θ)F3(t)) ,
(13)
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it holds the following conditions:

Rx(θ) = minI
(
A+ g(θ)D(θ), g(θ)Tx(θ)

)
⊆ Cy ∩ Cθ ∀θ, (14)

and
CxRx(θ) = im(Cx), ∀θ. (15)

Ry(θ) = minI
(
A+ g(θ)D(θ), g(θ)Ty(θ)

)
⊆ Cx ∩ Cθ ∀θ, (16)

and
CyRy(θ) = im(Cy), ∀θ. (17)

Rθ(θ) = minI
(
A+ g(θ)D(θ), g(θ)Tθ(θ)

)
⊆ Cx ∩ Cy ∀θ, (18)

and
CθRθ(θ) = im(Cθ), ∀θ. (19)

Here,

minI(A, im(g(θ))) =
n−1∑
i=0

Aiim(g(θ))

is a minimum A–invariant subspace containing im(g(θ)) ∀ θ. Moreover, the partition fields
Tx(θ), Ty(θ) and Tθ(θ) satisfy the following relationships:

im(g(θ) ·Tx(θ)) = im(g(θ)) ∩Rx(θ),
im(g(θ) ·Ty(θ)) = im(g(θ)) ∩Ry(θ),
im(g(θ) ·Tθ(θ)) = im(g(θ)) ∩Rθ(θ).

(20)

The stabilizing field D(θ) is such that:

(A+ g(θ)D(θ))Rx(θ) ⊆ Rx(θ), (21)

(A+ g(θ)D(θ))Ry(θ) ⊆ Ry(θ), (22)

and
(A+ g(θ)D(θ))Rθ(θ) ⊆ Rθ(θ). (23)

Considering matrix A defined in (3) it is straightforward to see that this matrix is structurally
already decoupled and intrinsically stable, this implies that field D(θ) = 0 ∀θ. Considering

T(θ) = [Tx(θ),Ty(θ),Tθ(θ),Tc(θ)],

where Tc(θ) is defined in a complementary fashion and it is straightforward to show that matrix
Tc = 0. In particular, matrix Tc represents the complementary field partition to the subspaces
of x-position, y-position and angular position of the Robotino. The Robotino motion is described
using just three variables, therefore partitions Tx(θ),Ty(θ),Tθ(θ) complete the transformation
and thus Tc = 0.

imT(θ) = im[Tx(θ),Ty(θ),Tθ(θ)] = imTx(θ)⊕ imTy(θ)⊕ imTθ(θ). (24)
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Considering the output matrices (6), (7) and (8) corresponding to x-position, y-position and
angular position their respective kernels are as follows:

Cx = im


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Cy = im


1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

 , Cθ = im


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 1

 .

(25)

According to relation (9) it is straightforward to observe that the following three equations hold
∀ θ;

im(g(θ)) ∩
(
Cx ∩ Cy

)
̸= 0, (26)

im(g(θ)) ∩
(
Cx ∩ Cθ

)
̸= 0, (27)

im(g(θ)) ∩
(
Cy) ∩ Cθ

)
̸= 0. (28)

Field g(θ) is a function of θ without singularities if θ ̸= π/2+kπ with k ∈ N. For sake of brevity
the following field is calculated considering just θ = 0:

(g(θ))† =

0 0 0 a(θ) 0 b(θ)
0 c(θ) 0 −a(θ) 0 b(θ)
0 −c(θ) 0 −a(θ) 0 b(θ)

 , (29)

where with (g(θ))† the pseudo inverse of field g(θ) is indicated. Functions a(θ), b(θ) and c(θ)
are functions of the variable θ with θ ≈ 0. The following calculation is obtained for θ ̸= π/2+kπ
with k ∈ N:

Cx ∩ Cy = im


0 0 0 0
1 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , Cθ ∩ Cy = im


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 , Cθ ∩ Cx = im


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 .

(30)

The following calculation allows to get the required fields for the decoupling of the mechanical
system:

Tθ(θ) = (g(θ))† · im(g(θ)) ∩ Cx ∩ Cy, (31)

Tx(θ) = (g(θ))† · im(g(θ)) ∩ Cθ ∩ Cy, (32)

Ty(θ) = (g(θ))† · im(g(θ)) ∩ Cθ) ∩ Cx. (33)

Adding all 3 T-Fields together, we get a new field T(θ):

T(θ) = Tx(θ) +Ty(θ) +Tθ(θ). (34)

Field T(θ) can be seen as a preselecting field and the following product realises the mechanical
decoupling:

B = im(g(θ)T(θ)) = im


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 , (35)

in which matrix B can be seen as a resulting input matrix.
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4. On the Functional Controllability of the Robotino
This section is aimed to the analysis of the output functional controllability of the Robotino
system. As already pointed out, we are interested in controlling motion tracking without tran-
sients of error variables. In the whole, in the Robotino control, the exact trajectory tracking is
an ambitious objective and this is particularly emphasized by advanced control tasks recalled in
Section 1. For solving the problem, the natural approach is to analyze the constrained output
controllability idea, [5] and [1], formalized below.

Definition 2 (Perfect output controllability) Given the triple (A,B,C), the output
subspace Li is said to be perfect output functionally controllable with respect to i-th derivative
and with respect to the subspace of states F if Li = CF and, for every initial state x0 ∈ F ,
it is possible, by means of proper bounded and measurable control functions, to follow in L any
trajectory arbitrarily given in the class of functions which admit i-th derivative with respect to
time, while the state evolves into F .

�
Recall, cf. [5], that the output functional controllability is strictly related to the geometric–type
extension of the relative degree for multivariable systems and that each subspace F satisfying
Definition 2 is (A,B)–controlled invariant.
The following theorem which was demonstrated in [5] and in [1] is reported here below to be
applied for the Robotino case.

Theorem 1 (Output Functional Controllability and Decoupling of the Robotino) The
output subspaces im(Cx), im(Cy) and im(Cθ) are output functionally controllable with respect

to the 3rd derivative and with respect to the constrained reachable subspaces Rx(θ), Ry(θ), and
Rθ(θ) respectively. Moreover, field T(θ) makes the system, with outputs x(t), y(t) and θ(t)
decoupled and output functionally controllable.

�

Remark 1 Regarding the functional controllability of rigid body as object motions, the 3rd order
of derivative means that the outputs x(t), y(t) and θ(t) can perfectly track any desired trajectories
xd(t), yd(t) and θd(t) which has a piecewise continuous 3rd derivative. This is true for all initial
states xo in Rx(θ), Ry(θ), and Rθ(θ) and with piecewise continuous control functions F(t).
Furthermore, it could be easily shown that order 3 of the rigid body object motions is not due to
the particular choice of the subspaces Rx(θ), Ry(θ), and Rθ(θ) but it is an inherent property of
the system. It is related to the relative degree of the relationship between the rigid body object
motion and the DC-Drive input voltage.

�
In the following a fundamental condition is shown, further details in [5].

Projection Condition
Given the system represented as (A,B,C). F i is a subspace of functional controllability of the
output with respect to the i-derivative, if and only if:

F i ⊆ F i ∩ Zi−1 + C, (36)

where Zi−1 is defined in the following way: Zo = B and Zj = B +A(Zj−1 ∩ F i ∩ C). �
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Sketch of the proof considering the Robotino case
It is to be remarked that the Projection Condition states a necessary and sufficient condition for
functional controllability of a system. If just the mechanical part of the model is considered, it is
possible to show that an output controllability with respect to the second derivative is obtained.
In fact, in case i = 2, in a generic point x ∈ F2 of a generic trajectory, exists, per definition, at
least a velocity of state ẋ ∈ F2. All admissible velocities on F2 are obtained adding to ẋ vectors
belonging to subspace F2 ∩ B. Thus, such a subspace represents the set of all possible velocity
variations and F2 ∩B ∩ C represents the set of all velocity variations which are not visible from
the output. Being in general

ẍ(t) = Aẋ(t) +Bu̇(t), (37)

then with a suitable choice of the control u1(t)+u2(t), in which u1(t) is manipulable in its second
derivative and such that Bu1(t) ∈ F2∩B∩C, and u2(t) is manipulable in its first derivative and
such that Bu2(t) ∈ B. Thus, if the trajectory evolves in the following subspace

Z1 = B +AF2 ∩ B ∩ C, (38)

it is possible to variate the second derivative of it. A trajectory belongs to F2 if its derivative
belongs to F2 (invariant subspace definition according to [1]) and it is necessary that its
variations belong to Z1 ∩F2. If L2 indicates an output subspace, then L2 = CF2 is a subspace
of output functional controllability with respect to the second derivative if and only if:

CF2 = C(F2 ∩ Z1), (39)

or
F2 + C = C(F2 ∩ Z1) + C. (40)

�

Remark 2 In other words, subspace Z1 represents the subspace of all the manipulable
trajectories with continuous second derivative. If the trajectory belongs to Z1, then it is possible
to manipulate the first and the second derivatives in Z1. This can be done by means of proper
bounded and measurable control functions. In fact in so doing, it is possible to follow in L2 any
trajectory arbitrarily given in the class of functions which admit 2nd derivative with respect to
time, while the state evolves into F2.

�
Considering again the mechanical system and choosing subspaces Fx, Fy and Fθ as candidate
subspaces:

Fx = im


1 0
0 1
0 0
0 0
0 0
0 0

 , Fy = im


0 0
0 0
1 0
0 1
0 0
0 0

 , and Fθ = im


0 0
0 0
0 0
0 0
1 0
0 1

 . (41)

It can be shown that the mechanical system with this choice of subspaces can be functionally
controllable on trajectories with continuous 2nd derivatives. In fact, considering that F1 *
F1 ∩ Z0 + Cx, to be more precise

F1
x ∩ Z0 =


0
1
0
0
0
0

 , (42)

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012027 doi:10.1088/1742-6596/659/1/012027

8



so the mechanical system is not functionally controllable with respect to trajectories of the 1st

order. Similar results can be obtained for considering the output subspace imCy and imCθ. If
the following relation is considered F2

x ⊆ F2
x ∩ Z1 + Cx, to be more precise

Z1 =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

+



0 1 0 0 0 0

0 −kv
M 0 0 0 0

0 0 0 1 0 0

0 0 0 −kv
M 0 0

0 0 0 0 0 1

0 0 0 0 0 −kθ
J

 ·

im


1 0
0 1
0 0
0 0
0 0
0 0

 ∩


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 ∩ im


0 0 0
1 0 0
0 0 0
0 −1 0
0 0 0
0 0 1

 = B. (43)

F2
x ∩ Z1 = F2

x . (44)

It is possible to see then that equation (39) is satisfied thus also equation (40) is satisfied. Sim-
ilar results can be obtained after considering the output subspace imCy and imCθ.

Remark 3 After considering relation (40) it is possible to see that functional subspace F2

consists of the position subspace along trajectory x(t) and its velocity subspace. Moreover, the
velocity subspace belongs to Cx. Similar considerations can be obtained considering the output
subspace imCy and imCθ. �

Considering the electrical drive which is connected in input to the mechanical drive, it can be
shown that this system is functionally controllable considering trajectories with continuous 1st

derivative. To conclude, considering the cascade structure of the whole system, the Robotino
can be functionally controlled considering trajectories with continuous 3rd derivative.

5. Simulation Results
Figure 3 shows the Simulink/Matlab block diagram used for simulation. Using a decentralized
MPC-controller with the geometric decoupling approach acting as a pre-control, different
trajectories can be tracked. As such the MPC accepts trajectories in horizontal, vertical and
angular direction and attempts to direct the Robotino only in the specified direction. For sake
of brevity the control strategy is not presented. Therefore, it is possible to move the Robotino
along the x-axis without a rotation for example.
Figure 4 shows a very accurate movements along the desired trajectory which is represented in
the tested case by a circle and by an avoidance trajectory path. In Fig. 5 the current in case
of the circle and the avoidance trajectory are represented. The circle is realized considering a
continuous sine and a cosine function on the X and Y movements. These signals are visible in
term of voltages of the X and Y drives in Fig. 6. It is possible to observe from Fig. 6 that the
cosine function is not exactly reproducible because its not continuity function and this effect is
also visible in the left part of Fig. 4 in which a considerable initial error occurs. Additionally
it is vital, that the drives are not forced to output more than they can handle, so voltages and
currents would have to remain in their respective boundaries. The right part of Fig. 4 shows
a possible trajectory avoidance which is a typical requirement in the Robotino tasks. From

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012027 doi:10.1088/1742-6596/659/1/012027

9



Figure 3. Block diagram of the control system structure

the right part of Fig. 4 it is possible to see an initial error in the trajectory tracking. This is
a structural error due, as before, to the desired trajectory function which is a function of C0

(continuous function). Nevertheless, if the initial error represented in the left part of Fig. 4
is compared with that of the right part, it is possible to remark that in the case of obstacle
avoidance the error seems to be smaller than that in the circle case. This aspect can be justified
considering that the X Y movement generating functions in the case of obstacle avoidance are a
sine and a ramp, so they are continuous functions. Figure 5 shows in term of currents those two
different loads. In particular, the case of obstacle avoidance presents a lower level of currents in
the transient phase.
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Figure 4. X-Y-Trajectory of the Robotino (left). Trajectory object avoidance (right)
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Figure 5. Currents of the three drives acting the three wheels in the case of trajectory avoidance
(left). Currents of the three drives acting the three wheels in the case of trajectory avoidance
(right)
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Figure 6. Output of X-axis and Y-axis MPC

6. Conclusion
This paper presents a procedure in order to obtain the decoupling functional controllability
between horizontal, vertical and angular motions using an geometric approach. Here, the
functional decoupling problem is investigated. To achieve a decoupling effect a feedback control
law is needed together with a feed-forward regulator. The relevance of the motion functional
controllability in the Robotino control is justified by the necessity of very fast and very precise
loops of acceleration control counteracting errors in displacements caused by possible disturbance
actions. Simulation results are shown to indicate the potential of this approach.
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