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Abstract. The paper focuses on robust state estimation and control for nonlinear system with
uncertain parameters. In particular, the problem is oriented towards a practical application for
a laboratory three-tank system. The proposed approach starts with a general description of
the system and assumptions regarding uncertain parameters and a nonlinear function. The
subsequent part of the paper is concerned with the design of the robust observer and controller
for nonlinear systems. To confirm the performance of the proposed approaches, the final part
presents results obtained for the laboratory three-tank system.

1. Introduction
The problem of designing a robust observer and a state feedback control to guarantee the global
stability of a nonlinear system with uncertain parameters has received considerable attention
during the last three decades. There are meany technique for state estimation and control for
nonlinear system, for example: extended Kalman filter, adaptive technique, sliding mode, LPV
technique, neural-networks, fuzzy rules base on Takagi–Sugeno etc. [10, 7, 11, 3, 16, 22, 20, 13, 9,
2]. Irrespective of the large spectrum of available methods non of them is universal to be suitable
for arbitrary nonlinear systems. Thus, the complexity of the nonlinear systems, in particular
multi–input multioutput system forces the development of new methods. It can be perceived as
a generalization of the approaches proposed for Lipschitz systems as well as its recent one-sided
counterpart. The proposed approach provides a novel output feedback control strategy that is
divide into two traditional steps, i.e., observer design and controller design. Firstly, a robust
observer design strategy is described that can tackle both parametric uncertainty and additive
external disturbances. Subsequently, the robust control strategy is portrayed that follows general
ideas employed for the observer design strategy.

Note that the proposed strategy is a preliminary step to designing robust fault-tolerant control
scheme[22]. However, this is beyond the scope of this paper.

The paper is organised as follows. Section 2 introduces a description of the system along with
assumptions regarding the nonlinearities. Whilst section 3 describes the concept of designing
the robust observer. The subsequent section 4 presents the robust control framework. The final
part of the paper is concerned with an illustrative example and conclusions.
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2. A general description of system
Let us consider a non-linear system:

xk+1 = (A + ∆A)xk + Buk + g (xk) + W 1wk, (1)

yk = Cxk + W 2wk (2)

where matrices A, B define the nominal model and ∆A represent admissible uncertainties which
are assumed to be of the form [

∆A
]

= HF
[
EA

]
(3)

where H, EA are now constant matrices of compatible dimensions, F is an unknown matrix
satisfies

FTF � I, (4)

where xk ∈ X ⊂ Rn is the state, uk ∈ U ∈ Rr stands for the input, yk ∈ Rm denotes the output,
g (xk) is non-linear function with respect to xk and uk wk ∈ l2 is a an exogenous disturbance
vector and W 1 ∈ Rn×n, W 2 ∈ Rm×n stand for its distribution matrices while

l2 = {w ∈ Rn| ‖w‖l2 < +∞} , ‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (5)

Moreover, the following set of assumptions are imposed:

Assumption 1:

g (x)T x ≤ xTMx, M ∈M. (6)

Assumption 2:

g (x)T g (x) ≤ xTMTMx, M ∈M. (7)

Assumption 3: There exists a matrix M such that

(g (a)− g (b))T (a− b) ≤ (a− b)TM(a− b), ∀a, b ∈ X. (8)

Assumption 4: There exists a matrix M such that

(g (a)− g (b))T (g (a,u)− g (b,u)) ≤ (a− b)TMTM(a− b), ∀a, b ∈ X. (9)

The paper extends the idea of one-sided Lipschitz condition [19, 25] by imposing Assumption
3. Assumption 4 extends the usual Lipschitz condition. Using the Differential Mean Value
Theorem (DMVT) [24], it is possible to describe Lipschitz constant matrices by supremum of
the norm of Jacobian of the function.

g (a)− g (b) = Mx(a− b), (10)

with

Mx,u =

[(
∂g1
∂x

(c1,u)

)T
. . .

(
∂gn
∂x

(cn,u)

)T]T
, (11)

where c1, . . . , cn ∈ Co(a, b), ci 6= a, ci 6= b, i = 1, . . . , n. Assuming that

āi,j ≥
∂gi
∂xj
≥ ai,j , i = 1, . . . , n, j = 1, . . . , n, (12)

it is clear that:
Mx =

{
M ∈ Rn×n|āi,j ≥ mx,i,j ≥ ai,j , i, j = 1, . . . , n,

}
(13)

It is worthwhile that, if MTM = γ2I, then Assumption 3 becomes a usual Lipschitz
condition [1, 15, 18, 17], with γ being a Lipschitz constant. This property makes the proposed
employed strategy more general than those presented in the literature [1, 15, 18, 17].
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3. Design of the state observer
The main objective of this section is to present the design procedure of the robust observer that
will be able to estimate all state vector for proposed nonlinear system. For that purpose, the
following structure is proposed

x̂k+1 = Ax̂k + Buk + g (x̂k) + Ko(yk −Cx̂k), (14)

while the state estimation error is given by

ek+1 = xk+1 − x̂k+1 = Ãek + G̃xk + sk + W̃wk, (15)

where

Ã = (A−KoC), G̃ = (HFEA), sk = g (xk)− g (x̂k) (16)

W̃ = (W 1 −KoW 2).

Theorem 1. For a prescribed disturbance attenuation level µ > 0, the observer design for the
system (15) is solvable if there exist N , U , P � 0, α > 0, β > 0, ε > 0 such that the following
condition is satisfied:

I − P + α(M + MT ) 0 −αI 0 ATUT −CTNT MTUT

0 −P + εET
AE

T
A 0 0 0 0

−αI 0 −βI 0 UT 0

0 0 0 −µ2I W T
1 U

T −W T
2 N

T 0

UA−NC 0 U UW 1 −NW 2 P −U −UT 0

UM 0 0 0 0 βI −U −UT

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 UH 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 HTUT 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−εI 0 0 0 0 0
0 −εI 0 0 0 0
0 0 −εI 0 0 0
0 0 0 −εI 0 0
0 0 0 0 −εI 0
0 0 0 0 0 −εI



≺ 0. (17)

Proof. The problem of H∞ observer design is to determine the matrix Ko such that[12, 14, 23]

lim
k→∞

ek = 0 for wk = 0 (18)

‖ek‖l2 ≤ µ‖wk‖l2 for wk 6= 0, e0 = 0. (19)
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In order to settle the above problem it is sufficient to find a Lyapunov function Vk such that:

∆Vk + eTk ek − µ2wT
kwk < 0, k = 0, . . .∞, (20)

where

∆Vk = Vk+1 − Vk, (21)

Vk = eTkPek + xTkPxk, (22)

∆Vk = eTk+1Pek+1 − eTkPek − xTkPxk. (23)

Consequently, using (15)

∆Vk + eTk ek − µ2wT
kwk =

eTk

(
Ã
T
PÃ + I − P

)
ek + eTk

(
Ã
T
PG̃

)
xk + eTk

(
Ã
T
P
)
sk + eTk

(
Ã
T
PW̃

)
wk+

xTk

(
G̃
T
PÃ

)
ek + xTk

(
G̃
T
PG̃− P

)
xk + xTk

(
G̃
T
P
)
sk + xTk

(
G̃
T
PW̃

)
wk+ (24)

sTk

(
PÃ

)
ek + sTk

(
PG̃

)
xk + sTk (P ) sk + sTk

(
PW̃

)
wk+

wT
k

(
W̃PÃ

)
ek + wT

k

(
W̃PG̃

)
xk + wT

k

(
W̃P

)
sk + wT

k

(
W̃

T
PW̃ − µ2I

)
wk < 0.

By defining

ṽk = [eTk ,x
T
k , s

T
k ,w

T
k ]T , (25)

it can be shown that (25) is equivalent to

ṽTk


Ã
T
PÃ + I − P Ã

T
G̃ Ã

T
P Ã

T
PW̃

G̃
T
PÃ G̃

T
PG̃− P G̃

T
P G̃

T
PW̃

PÃ PG̃ P PW̃

W̃
T
PÃ W̃PG̃ W̃

T
P W̃

T
PW̃ − µ2I

 ṽk ≺ 0. (26)

Analyzing assumption of non-linear function, it can be show that (8) is equivalent to

sTk ek ≤ eTkMek =
1

2
eTk (M + MT )ek. (27)

Inequality (27) can be written as

1

2
eTk (M + MT )ek − sTk ek ≤ 0,

which is equivalent to

1

2
eTk (M + MT )ek −

1

2
sTk ek −

1

2
eTk sk ≥ 0. (28)

Thus, for any α > 0

αṽTk


(M + MT ) 0 −I 0

0 0 0 0
−I 0 0 0
0 0 0 0

 ṽk ≥ 0. (29)
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Similarly, for some β inequality (9) can be written as

βeTkM
TMek − βsTk sk ≥ 0. (30)

Thus, for any β > 0

βv̄Tk


MTM 0 0 0

0 0 0 0
0 0 −I 0
0 0 0 0

 v̄k ≥ 0. (31)

Combining together (26), (29) and (31) gives
Ã
T
PÃ + I − P + α(M + MT ) + βMTM Ã

T
G̃ Ã

T
P − αI Ã

T
PW̃

G̃
T
PÃ G̃

T
PG̃− P G̃

T
P G̃

T
PW̃

PÃ− αI P G̃ P − βI PW̃

W̃
T
PÃ W̃PG̃ W̃

T
P W̃

T
PW̃ − µ2I

 ≺ 0

(32)

Lemma 1. The following statements are equivalent[6]:

(i) There exists X � 0 such that
V TXV −W ≺ 0 (33)

(ii) There exists X � 0 such that [
−W V TUT

UV X −U −UT

]
≺ 0. (34)

Rewriting (32) as
Ã
T

G̃
T

IT

W̃
T

P
[
Ã G̃ I W̃

]
+


I − P + α(M + MT ) + βMTM 0 −αI 0

0 −P 0 0
−αI 0 −βI 0
0 0 0 −µ2I

 ≺ 0,

(35)

and using Lemma 1 to (35) yields

I − P + α(M + MT ) 0 −αI 0 Ã
T
UT MTUT

0 −P 0 0 G̃
T
UT 0

−αI 0 −βI 0 UT 0

0 0 0 −µ2I W̃
T
UT 0

UÃ UG̃ U UW̃ P −U −UT 0

UM 0 0 0 0 βI −U −UT


≺ 0, (36)
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with UÃ = UA − UKoC = UA −NC, UW̃ = UW 1 − UKoW 2 = UW 1 −NW 2 and
UG̃ = UHFEA. Inequality (36) can be written in equivalent form

I − P + α(M + MT ) 0 −αI 0 ATUT −CTNT MTUT

0 −P 0 0 0 0

−αI 0 −βI 0 UT 0

0 0 0 −µ2I W T
1 U

T −W T
2 N

T 0

UA−NC 0 U UW 1 −NW 2 P −U −UT 0

UM 0 0 0 0 βI −U −UT

+


0 0 0 0 0 0

0 ET
A 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





FT 0 0 0 0 0

0 FT 0 0 0 0

0 0 FT 0 0 0

0 0 0 FT 0 0

0 0 0 0 FT 0

0 0 0 0 0 FT




0 0 0 0 0 0

0 0 0 0 HTUT 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+ (37)


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 UH 0 0 0 0
0 0 0 0 0 0




F 0 0 0 0 0
0 F 0 0 0 0
0 0 F 0 0 0
0 0 0 F 0 0
0 0 0 0 F 0
0 0 0 0 0 F




0 0 0 0 0 0
0 EA 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ≺ 0,

Lemma 2. Let H, E be given real matrices of appropriate dimensions and F satisfy FTF � I.
Then for any ε > 0 the following holds

HFE + ETFTH � εHHT +
1

ε
ETE. (38)

Applying Lemma 2 to (37), we obtain

I − P + α(M + MT ) 0 −αI 0 ATUT −CTNT MTUT

0 −P + εET
AE

T
A 0 0 0 0

−αI 0 −βI 0 UT 0

0 0 0 −µ2I W T
1 U

T −W T
2 N

T 0

UA−NC 0 U UW 1 −NW 2 P −U −UT 0

UM 0 0 0 0 βI −U −UT

+

(39)

ε−1


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 UH 0 0 0 0
0 0 0 0 0 0




0 0 0 0 0 0

0 0 0 0 HTUT 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ≺ 0.

Applying the Schur complements leads to (17), which completes the proof.

4. Design of the state feedback controller
The main objective of this section is to present the design procedure of the robust controller for
the proposed system. The controller will be designed in such a way that a predefined disturbance
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attenuation level with respect to the state of the system is achieved. To solve the above problem
the following control scheme is proposed

uk = −Kcxk. (40)

Substituting (40) in to (1) gives

xk+1 = Āxk + g (xk) + W̄wk (41)

where

Ā = (A−BKc + HFEA) , W̄ = W 1. (42)

Theorem 2. For a prescribed disturbance attenuation level µ > 0, the controller design for the
system (41) is solvable if there exist N , U , P � 0, α > 0, β > 0, ε > 0 such that the following
condition is satisfied:

I − P + α(M + MT ) + HHT −αI 0 AU −BN MU
−αI −βI 0 U 0
0 0 −µ2I W 1U 0

UTAT −NTBT UT UTW T
1 P −U −UT 0

UTMT 0 0 0 βI −U −UT

0 0 0 EAU 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

UTET
A 0 0 0 0

0 0 0 0 0
−εI 0 0 0 0
0 −εI 0 0 0
0 0 −εI 0 0
0 0 0 −εI 0
0 0 0 0 −εI


≺ 0. (43)

Proof. The problem of H∞ controller design is to determine the matrix Kc such that[21, 4]

lim
k→∞

xk = 0 for wk = 0 (44)

‖xk‖l2 ≤ µ‖vk‖l2 for wk 6= 0, x0 = 0. (45)

In order to settle the above problem it is sufficient to find a Lyapunov function Vk such that:

∆Vk + xTk xk − µ2wT
kwk < 0, k = 0, . . .∞, (46)

where

∆Vk = Vk+1 − Vk, (47)

Vk = xTkPxk, (48)

∆Vk = xTk+1Pxk+1 − xTkPxk, (49)
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Consequently, using (41)

∆Vk + xTk xk − µ2wT
kwk =

xTk

(
Ā
T
PĀ− P + I

)
xk + xTk

(
Ā
T
P
)
g (xk) + xTk

(
Ā
T
PW̄

)
wk+

g (xk)
T (PĀ

)
xk + g (xk)

T (P ) g (xk) + g (xk)
T (PW̄

)
wk+

wT
k

(
W̄

T
PĀ

)
xk + wT

k

(
W̄

T
P
)
g (xk) + wT

k

(
W̄

T
PW̄ − µ2I

)
wk < 0.

By defining

vk = [xTk , g (xk)
T ,wT

k ]T , (50)

it can be shown that (50) is equivalent to

vTk

ĀT
PĀ + I − P Ā

T
P Ā

T
PW̄

PĀ P PW

W̄
T
PĀ W̄

T
P W̄

T
PW̄ − µ2I

vk ≺ 0. (51)

Analyzing assumption of non-linear function, it can be show that (6) is equivalent to

g (x)T x ≤ xTMx =
1

2
xT (M + MT )x, M ∈M. (52)

Inequality (52) can be written as

1

2
xT (M + MT )x− g (xk)

T xk � 0, M ∈M, (53)

which is equivalent to

1

2
xTk (M + MT )xk −

1

2
g (xk)

T xk −
1

2
xTk g (xk) ≥ 0. (54)

Thus, for any α > 0

αvTk

(M + MT ) −I 0
−I 0 0
0 0 0

vk � 0, α > 0, M ∈M. (55)

Similarly, for some β inequality (7) can be written as

βxTkM
TMxk − βg (xk)

T g (xk) � 0, β > 0. (56)

βvTk

MTM 0 0
0 −I 0
0 0 0

vk � 0. (57)

Combining together (51), (55) and (57) givesĀT
PĀ + I − P + α(M + MT ) + βMTM Ā

T
P − αI Ā

T
PW̄

PĀ− αI P − βI PW

W̄
T
PĀ W̄

T
P W̄

T
PW̄ − µ2I

 ≺ 0 (58)
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Rewriting (58) as Ā
T

IT

W̄
T

P
[
Ā I W̄

] I − P + α(M + MT ) + βMTM −αI 0
−αI −βI 0
0 0 −µ2I

 ≺ 0, (59)

and using a transposed version Lemma 1 to (59) yields
I − P + α(M + MT ) −αI 0 ĀU MU

−αI −βI 0 U 0
0 0 −µ2I W̄U 0

UT Ā
T

UT UTW̄
T

P −U −UT 0

UTMT 0 0 0 βI −U −UT

 ≺ 0, (60)

with ĀU = AU −BKcU + HFEAU = AU −BN + HFEAU and W̄U = W 1U . Written
(60) similarly as inequality (36) and then applying Lemma 2 and Schur complements leads to
(43),which completes the proof.

5. Case study
To verify the proposed approach, it was implemented for real three-tank system portrayed in
Fig. 1 [5, 14, 8]. The system is composed of three separate tanks with variable cross-area

Figure 1. Three tank system

sections, where nonlinearities are imposed from shape of the second and third tank. The model
was identified and following system matrices were obtained as well as nonlinear function of the
system:

A =

0.9982 0 0
0.0018 0.9973 0

0 0.0025 0.9972

 , B =

11.1400
0
0

 , W 1 =

0.0100 0 0
0 0.0100 0
0 0 0.0100


H =

0.1
0.1
0

 , E =

0.2
0
0

T , W 1 = 0.05C, g (xk) =


1

β1(x1)
C1x

α1
1,k

1
β2(x2,k)

C1x
α1
1,k −

1
β2(x2,k)

C2x
α2
2,k

1
β3(x3,k)

C2x
α2
2,k −

1
β3(x3,k)

C3x
α3
3,k

 .
where: βi(xi) is cross-sectional area of i-th tank, αi denotes the flow coefficient parameter and
Ci stands for i-th valve open level, the last two parameters were obtain through identification
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process. The numerical parameters obtained from identification along with operating ranges

are: 0 ≤ u ≤ 1.5e−4
[
m3

s

]
, 0.01 ≤ x1−3 ≤ 0.35[m] with C1 = 1.6721e−4, C2 = 1.8804e−4,

C3 = 1.6637e−4, α1 = 0.4334, α2 = 0.4134, α2 = 0.3673.
By varying each component of xk within its possible domain, defined by the physical

constraints of the three-tank system, it is possible to obtain the matrices

Mmin =

−1.0094 0 0
−0.0010 −1.0457 0

0 −0.0014 −1.0593

 , Mmax =

−0.9997 0 0
0.0238 −0.9968 0

0 0.0224 −0.9979


which contain all elements āi,j and ai,j , i, j = 1, . . . , n defining (13) respectively. Afterwards,
taking into account all the possible combinations of elements Mmin and Mmax, 32 matrices M i

are obtained.
For the purpose of further comparative study, two cases were employed:

Case SC1: It will be assumed that the whole state vector is directly measured

C =

1 0 0
0 1 0
0 0 1

 , Ko =

 0.7382 −0.0008 −0.0000
0.0012 0.7402 0.0005
−0.0000 0.0030 0.7405

 , µ = 0.5623, x0 = 0, z0 = 0

Case SC2: It will be assumed that some state variables are not directly measured

C =

[
1 0 0
0 0 1

]
, Ko =

 0.6977 −0.0000
0.0002 0.0026
−0.0000 0.7056

 , µ = 0.5623, x0 = 0, z0 = 0

Figure 2–3 present the results obtained for the proposed observer structure for case SC1. From
these results, it is evident that the state estimation is performed with a good quality. Figure 3
also shows the state estimation for second state which is not directly measured. This corresponds
to case SC2. From obtained results, it is evident that the state estimation is performed with a
good quality. Of course there are differences between the quality of the estimation for the case
SC1 and SC2 for state x2. Finally, Fig. 4 shows the system performance for the proposed control
scheme. The goal is to control the liquid level in an upper tank. The reference signal (red solid
line) is the target that has to be achieved by the controller. The robust controller was designed
with (43) and µ = 0.5623. The obtained robust controller is Kc = [0.05731, 0.00076, 0.000001].
The state vector is derived by the observer for SC2. From these results it can be seen that the
state converges to the required setpoint.

6. Conclusions
The main objective of this paper was to propose problem of robust state estimation and robust
control for nonlinear systems. The proposed design procedure for robust observer and robust
controller is relatively simple and boils down to solving a set of linear matrix inequalities.
The proposed approach can be efficiently implemented to the real-time system. The final part
presents comprehensive case study of the three-tank system. The results clearly exhibit the high
performance of the proposed scheme.
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Figure 2. SC1: State variable x1 (left) x2 (right) (black line) and its estimates (red line) for
t = 0, . . . , 700[s]
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0, . . . , 700[s]. SC2(right): State variable x2 (black line) and its estimates (red line) for
t = 0, . . . , 700[s]

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x
1

Time[s]

 

 

y
ref

y
1

20 30 40
0

0.1

0.2

Figure 4. Performance of the system for t = 0, . . . , 100[s]

[1] M. Abbaszadeh and H.J. Marquez. Lmi optimization approach to robust hinfinity observer design and
static output feedback stabilization for non-linear uncertain systems. International Journal of Robust and
Nonlinear Control, 19(3):313–340, 2008.
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