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Abstract. This work is aimed at a comprehensive discussion of algorithms for the kinematic
parameters identification of robotic manipulators. We deal with an open-loop geometric
calibration task, when a full 6D robot’s end-effector pose is measured. Effective solutions
of such a task is of high interest in many practical applications, because it can dramatically
improve key robot characteristics. On the first step, we select optimal calibration configurations.
A comparative analysis of three different algorithms and two observability indexes used
for numerical optimization is provided. Afterwards, using the acquired and pre-processed
experimental data we identify modified Denavit-Hartenberg parameters of the manipulator.
Estimates are obtained resolving original nonlinear forward kinematics relations. Finally, we
compare nominal and calibrated geometric parameters and show how much deviations in these
parameters affect robot positioning accuracy. To the best of our knowledge, such integrated
efforts are new for the KUKA LWR4+ robot and Nikon K610 optical coordinate measuring
machine (CMM), which were used in the study. Discussion of practical issues on how to organise
the experiment is an additional contribution of this work. The proposed procedure is highly
automated and can be implemented to improve manipulator’s performance on a periodic basis.

1. Introduction
Absolute accuracy of a robot’s tool positioning is one of its key performance characteristics
that has a dedicated test standard [1]. It matters for almost all applications of industrial
manipulators, but precise positioning is even more important for such tasks as laser welding,
riveting, or automated fibre placement in composite manufacturing as well as for contact
operations like grinding or drilling.

This is an example, where an effective parameters identification technique finds a good
application, and competence areas of control and robotics communities perfectly complement
each other.

While the industrial manipulators mechanics and manufacturing techniques are constantly
improving, there is still a crucial trade-off between price and quality, therefore manufacturing
and assembly defects still exist and cause significant deviation of the real robot parameters from
its nominal values specified on the design phase. Such offsets in parameters used by a motion
planner or a motion controller can significantly degrade the overall system performance and even
cause the equipment damage. A way to handle the problem and improve the robot accuracy
just on a software level without changing the mechanical structure of a robot is the proper
calibration.
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Some of the industrial robots’ manufactures now offer an option, when a manipulator comes
with pre-calibrated parameters. However, there is a need for an identification procedure that
can be implemented on-site on a periodic basis in case if a robot was relocated, and simply
because parameters can drift with time.

The calibration problem was extensively developed in fundamental works of Hollerbach,
Khalil, Born and Menq, Daney, and others, and still remains an active research area [10, 11].

There are sources of robot positioning errors of different nature such as joint’s and link’s
flexibility or gear backlash and friction, but according to [12], poor estimation of basic parameters
defining robot geometry could be responsible for up to 90% of these errors. Here we discuss
an open-loop geometric calibration meaning that we estimate robot’s geometric parameters from
experiments when the robot end-effector is not physically fixed in space, but its position is
defined by an external measurement device.

The calibration procedure should be properly organized. Indeed, from the very beginning
an engineer is required to choose a number of robot’s configurations (poses) that will be most
informative and insensitive to noise in further processing of measurement records. Such poses
are typically found numerically via optimizing one or several aggregated criteria describing
sensitivity of parameters used in solution of a forwards kinematics for a robot. Moreover,
this preparatory step if often used to define sets of identifiable and non- or poorly identifiable
parameters. These sets depend on the arm kinematics and setup in particular, and can be
analysed in advance by detecting linear dependent columns of the parametric Jacobian for a
random set of configurations [9]. In this paper we provide the comparative analysis of three
different numerical optimization algorithms and two observability indexes for optimal calibration
poses selection.

After we conducted a series of experiments and acquired and pre-processed necessary data,
the identification itself can be organised. In most of the related works it is done by linearising
forward kinematics relations and then iteratively applying the least-squares algorithm (or its
modifications) [2, 6, 8]. While in general this approach should provide better convergence
compared to nonlinear optimization, it requires system parametric Jacobian to satisfy certain
conditions. In this study we organize search for the original nonlinear problem formulation. The
reason for that is described later in the text.

This work is aimed at a comprehensive discussion of experiments and numerical procedures
for the open-loop geometric calibration of the KUKA LWR4+ redundant robotic arm, when a
full 6D end-effector’s pose is measured using Nikon K610 optical CMM. While there are a number
of studies reporting successful results on its dynamic identification, we have not been able to
identify any work focused on calibration of the robot geometrical parameters. As every external
measuring system either a laser tracker or a photogrammetric equipment has it special features
and concomitant requirements, an experiment should be adjusted and design of an additional
tooling is usually needed. In our case, we designed a special LED fixture and imposed additional
constraints for calibration poses selection.

The rest of the paper is organized as follows. In Section 2 we describe the setup and practical
issues on organising experiments with the optical CMM. In Section 3 we discuss the problem
of selecting optimal calibration configurations and provide comparative analysis of different
optimization algorithms and observability indexes followed by its results. In Section 4 we solve
the problem of robot’s geometric parameters identification. Finally, we conclude the paper with
analysis of the obtained results and discussion on future steps.

2. Optimization of the Calibration Configurations
2.1. Problem Statement
An outcome of the geometric calibration is estimations of parameters describing relative location
of neighbouring coordinate systems associated with robot links. Basically, it means identifying
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parameters of the forward kinematics equation

Y l = F (Φ, q)|q=ql , (1)

where Y l = [xlylzlφlθlψl]T and ql = [ql1q
l
2 . . . q

l
n]T are the end-effector’s Cartesian pose and

relative to the measurement device and the vector of joint angles for robot’s configuration
l respectively, n is the number of robot joints, and Φ is the vector of unknown geometric
parameters.

It is clear that the calibration is feasible only if a total number of constraint equations
(1) from all measurements l = 1, 2 . . .M is bigger than a number of estimated parameters.
However, a good selection of the configurations is more important than its number to obtain
good identification results.

As a quantitative measure of the configurations optimality, several so-called observability
indices O(Q), Q = {q1, q2 . . . qM}, were introduced (refer to [4, 6] for more details). However,
all of these indexes rely on properties of the Jacobian evaluated in l = 1, 2 . . .M configurations

J(Q) =
[
J1; J2; . . . ; JM

]
, (2)

where J l in the Jacobian defined in the configuration ql

J l =
∂F (Φ, q)

∂Φ

∣∣∣∣
q=ql

.

Thus, the configurations optimization task can be formulated as a nonlinear constraint
optimization problem

max
Q

O(Q), subject to (3){
qli ∈ (qi,min; qi,max),
Y l ∈ (Ymin;Ymax),

∀i = 1 . . . n, l = 1 . . .M (4)

The most common way of composing the forward kinematics equation (1) is to use a set of
modified Denavit-Hartenberg (mDH) parameters

Φ = [α0, . . . αn+1, d0, . . . dn+1, θ0, . . . θn+1, r0, . . . rn+1]

and a homogeneous transformation

j−1Tj = Rotx,αjTransx,djRotz,θjTransz,rj .

For more detailed explanation, please, refer to [9].

2.2. Observability Indices
In this work we validated two different observation indices [6] . The first on is the inverse
condition number of the Jacobian (2)

O1 =
σmin
σmax

,

where σmin and σmax are Jacobian minimal and maximum singular values respectively (see [5]).
The second index was introduced in [2]

O2 =
R
√
σR . . . · σi . . . σ1√

M
,

where R is the Jacobian rank, M is the number of configurations, and σi, i = 1 . . . R are Jacobian
singular values.
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Initialize configurations set QM = {q1, q2, . . . qM}

Initialize Tabu list T = {QM}

if q+ = q−or k > P

Randomly pick L configs: q̄j , j = 1, . . . L s.t. (4)

for j = 1 . . . L maxq̄j (O(QM + {q̄j})) s.t. (4)

select q+ : maxq+=q̄j (O(QM + {q̄1}), . . . O(QM + {q̄L}))

if q+ ∈ T

T = {T + {q+}} QM+1 = {QM + {q+}}

select q− : maxq−=qi(O(QM+1 − {q1}), . . . O(QM+1 − {qi}) . . . O(QM+1 − {q+}))

QM = {QM+1 − {q−}}, k = k + 1 Exit

Add config.

Remove config.

Figure 1: Diagram for the iterative meta-heuristic algorithm algorithm with the Tabu rule

2.3. Eliminating Non-Identifiable Parameters
While a set of mDH parameters is known to be the minimal for robot kinematics representation,
depending on a particular calibration setup, some of the parameters in Φ can be non- or poorly
identifiable. These parameters are associated with linearly dependent columns of the Jacobian
J and consequently with zero of very small Jacobian singular values σi.

In order to recursively calculate Jacobian (2) and simultaneously eliminate non-identifiable
parameters, we used an approach described in details in [9].

2.4. Pose Optimization Algorithms
We compared performance of three different algorithms for calibration poses optimization.

The first one is conjugate-type deterministic algorithm similar to one described in [9]. It
tries to optimize the entire set of configuration on every iteration. However, algorithms of this
type have significant limitations: strong dependence on initial conditions and sticking in a local
minimum [4].

To avoid these issues we implemented a modification of the previous algorithm utilizing
multistart optimization, i.e. when the same algorithm starts N times (we selected N = 50)
consequently from randomly uniformly distributed initial conditions.

As an alternative to conjugate-type algorithms, we tested an iterative meta-heuristic
algorithm with the Tabu rule [4]. Instead of optimizing the entire configurations set, it
implements a 2-stage iterative procedure (see Fig. 1). Tabu list T here is a set of already
verified configurations, which is introduced to prevent a premature convergence of the algorithm
to local minima. This scheme is quite similar to genetic algorithms, while a stochastic behaviour
is introduced here by randomly selecting candidate configurations on each ’Add config.’ step.

We selected L = 10 and P = 2M . Compared to the conjugate-type algorithm, the
optimization task takes only n variables instead of n×M , but should be solved L× P times.

We used a SQP (sequential quadratic programming) solver for all aforementioned algorithms.
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3. Identification of the Geometric Parameters
Let us introduce a vector of discrepancies between the predicted and measured end-effector’s
Cartesian position

∆Y = Ym − Yc, (5)

where Ym =
[
Y 1
m, Y

2
m . . . Y

M
m

]
is the vector of measured poses and Yc =

[
Y 1
c , Y

2
c . . . Y

M
c

]
is the

vector of poses calculated from (1).
In the most of classical works forward kinematics relations (1) are linearised using Taylor

series expansion such that
∆Y = JB∆ΦB, (6)

where the base parametric Jacobian JB is defined from (2) eliminating linearly dependent
columns and ∆ΦB is the vector of base parameters’ correction.

In this case parameters estimates Φ̂B can be found iteratively applying ordinary least-squares
solution or its damped or weighted modifications (for details refer to [6]) that minimizes the
performance index ∆Y T∆Y

∆ΦB,k = J+
B∆Yk, (7)

Φ̂B,k = Φ̂B,k−1 + ∆ΦB,k,

where J+
B is the pseudo-inverse of the matrix JB.

However, convergence of the algorithm (7) is guaranteed only for well-conditioned problems
when O1 ≥ 0.01 [6]. As we can see from Table 3 we were not able to meet this requirement
for the selected setup, even applying different non-identifiable parameters elimination and
parameter scaling techniques [2, 6, 8, 9]. Therefore, instead of applying (5)-(7), we formulated
the identification task as a nonlinear optimization problem of finding a vector of parameters
estimates Φ̂ such that it minimizes the norm of output residual (5)∣∣∣∣∣∣Ym − F (Φ̂, Q)

∣∣∣∣∣∣→ min .

4. Experimental Results
4.1. Setup Description
KUKA LWR4+ is a redundant robotic arm with 7 rotational joints. It offers unique features
via its low-latency Fast Research Interface (FRI) developed with focus on research purposes [7].
At the same time, to the best of our knowledge, the only source of geometrical parameters’ data
for this robot is a CAD model, which provides quite rough estimations.

There are different kinds of metrological equipment suitable for calibration experiments,
including laser trackers [10] and photogrammetric systems [11], which are considerably less
expensive. We use the latter type Nikon K610 system. This optical CMM allows us localizing
end-effector in 3D space with sampling rate up to 1kHz and volumetric accuracy of 60 µm for
measurement volume of 17 m3. This way, having complete 6D pose measurements in calibration
experiments we are able to identify the maximum number of robot’s geometric parameters [6, 8].
Tracking movable objects is enabled through dynamic frames concept [3]. The system defines
positions of infrared LEDs by means of three linear CCD cameras scanning in different planes.
Diodes on/off phases are synchronized via strobers such that the camera ’distinguish’ between
different LEDs.

One more element, which is needed for calibration, is a fixture with LEDs that should be
attached to a robot tool plate. Based on Nikon specifications, an LED is guaranteed to be
visible only if an angle between a normal to its surface and a line of sight with the camera’s
central point does not exceed 30◦. It gives us ’a visibility cone’ of each LED. Thereby, a pyramid
geometry was optimized based on criteria:
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(a) Fixture CAD model (b) Pyramid geometry (c) LEDs’ visibility cones:
top view

Figure 2: LEDs fixture geometry

Table 1: Nominal mDH parameters

Frame αi, [rad] di, [m] θi, [rad] ri, [m]

0 0 0 1.549 −4.407
1 1.528 0.067 q1 − 0.815 −0.137
2 π

2 0 q2 0
3 −π

2 0 q3 0.4
4 −π

2 0 q4 0
5 π

2 0 q5 0.39
6 π

2 0 q6 0
7 −π

2 0 q7 − 0.268 2.2 · 10−3

8 0 0.014 1.0523 0.079

• all three ’visibility cones’ have at least one common point on a distance of 1.5m1 from the
pyramid top, i.e. there is no ’blind spot’ in between

• pyramids’ sides allows to inscribe a circle about a size of a LED

Geometry behind the calculation is illustrated on Fig. 2b–2c. We have chosen a design with
nine LEDs arranged in triples on sides of three similar pyramids, which are distributed on the
plate surface (see Fig. 2a).

Fig. 3 illustrates relations between different coordinate frames for the calibration setup.
Nominal mDH parameters values for the considered system are in the Table 1 2.
Except for physical limitations on joint angles, we should impose additional constraints on

the LEDs fixture Cartesian coordinates. Despite the fact that we can place the camera to cover
the entire robot workspace, the end-effector pose can be recovered only if at least 3 LEDs remain

1 The distance of 1.5 m was selected based on the relative location of the camera and the robot and parameters
of the camera’s field of view.
2 While the robot parameters (i = 1 . . . 7) were taken from the CAD model, parameters of the transformation
between the camera and the robot base frames (indexed with z) were calculated backwards from camera-based
measurements, and parameters for the transformation between the robot last joint and LEDs fixture frames
(indexed with e) were directly measured.In general, the Nikon camera allows direct measurements of the end-
effector’s pose relative to the robot base, therefore transformation between the camera and the robot base
coordinate frames can be excluded from consideration.
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Figure 3: Coordinate frames for camera, robot, and LEDs fixture

Table 2: Constraints for Configurations Optimization

Parameter Constraint

Joint angles, [rad] q1,3,5,7 ∈ [−17π
18 ,

17π
18 ],

q2,4 ∈ [−2π
3 ,

2π
3 ], q6 ∈ [−π

2 ,
π
2 ]

Fixture roll, [rad] φx,LED ∈ [−4π
9 ,

7π
18 ]

Fixture pitch, [rad] θy,LED ∈ [−π
4 ,

π
4 ]

Distance between LED TCP
√

0x28 +0 y28 ≥ 0.2
and robot base, [m]
z-coordinate of LED TCP, [m] 0z8 ≥ −0.1

visible. It gives us bounds on roll, pitch, and yaw angles of the LEDs fixture, expressed in the
camera coordinate frame. Two more constraints were imposed to guarantee that the LEDs
fixture will not collide with the robot base. All these constraints are summarized in Table 2.

4.2. Identification Results
As initial conditions for the optimization procedure we randomly selected M robot
configurations, satisfying (4), such that it was uniformly distributed across the robot’s workspace
and provided distinguishable variation in joint angles as well.

As the result of the non-identifiable parameters elimination procedure, we determined that
4 parameters θ0, r0, θ8, and r8 are non-identifiable that defines a set of 4(n+ 2)− 4 = 32 base
parameters ΦB to be calibrated and the base parametric Jacobian JB of size [6M × 32].

Comparative results of the optimization for sets of 10 and 20 configurations for all three
algorithms and two observability indices are given in Table 3.

Fig. 4 illustrates how joint angles change between initial and optimized calibration
configurations.

Fig. 5 visualizes how robot end-effector positions (relative to the camera coordinate frame)
change between nominal and optimized calibration configurations.

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012011 doi:10.1088/1742-6596/659/1/012011

7



Table 3: Optimised Observability Indices

Number of
Config.

Algorithm
Observability Index
O1 O2

M = 10

Non-optimized 0.000716 0.5685
Conjugate-type deterministic 0.001535 0.8065
Conjugate-type with multistart 0.001613 0.7955
Randomized iterative
with Tabu rule

0.001497 0.7904

M = 20

Non-optimized 0.000811 0.6435
Conjugate-type deterministic 0.001618 0.8142
Conjugate-type with multistart 0.001631 0.7973
Randomized iterative
with Tabu rule

0.001571 0.8091

Table 4: Calibrated mDH parameters

Frame αi, [rad] di, [m] θi, [rad] ri, [m]

0 0.01515 1.07 · 10−2 1.549 −4.407
1 1.52662 2.7 · 10−3 q1 − 0.815 −0.147
2 1.57093 −2.5 · 10−4 q2 − 3.9 · 10−3 1.3 · 10−4

3 −1.57029 −2.5 · 10−4 q3 − 9.7 · 10−3 0.399
4 −1.57031 1.0 · 10−3 q4 − 6.5 · 10−3 2.5 · 10−4

5 1.57025 −9.1 · 10−4 q5 + 8.3 · 10−4 0.391
6 1.57274 3.9 · 10−4 q6 − 1.6 · 10−3 9.5 · 10−5

7 −1.57261 −5.7 · 10−4 q7 − 0.267 1.1 · 10−2

8 6.5 · 10−4 −1.2 · 10−4 1.053 0.079

And finally, Fig. 6 shows if the constraints imposed on the LEDs fixture position and
orientation were matched.

For the calibration experiment we used a set of M = 20 optimised configurations found by
the conjugate-type algorithm with the observability index O1. Out of this set we picked M = 17
configurations, where we had good visibility of LEDs.

Estimated values for system’s mDH parameters are in Table 4.
Fig. 7 illustrates the difference in calculated end-effector’s Cartesian positions when nominal

and calibrated (identified) parameters sets are used. It is clear that for estimated geometric
parameters predicted values are much more closer to the measured ones.

5. Conclusions and Future Work
This work discusses the problem of robot kinematic calibration.

Open-loop geometric calibration of the KUKA LWR4+ redundant robotic arm, when a full
6D end-effector’s pose is measured using Nikon K610 optical CMM considered as a particular
example. To the best of our knowledge, such an experiment is a unique attempt on its own.

We compared 3 different algorithms and 2 observability indices solving the configurations
optimization task. Comparative analysis of the obtained results leads to the following
conclusions:
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(a) Conjugate-type algorithm, O1
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(b) Conjugate-type algorithm, O2
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(c) Iterative algorithm, O1

Figure 4: Joint coordinates for M = 10 selected calibration poses (only q1 and q3 are presented
for illustration purposes)

• Optimization algorithms gave tangible difference in terms of joint configurations and end-
effector’s poses allocation, but provided quite similar resulting observability indices. It
reveals features of the cost function, which is highly nonlinear and has many local minimums.

• The observability index O1 associated with the Jacobian condition number shows higher
relative improvement between initially selected and optimized configurations compared to
the Born-Menq index O2.

• In practice, the iterative meta-heuristic algorithm with Tabu rule didn’t ensure better
results, while required longer computation time.

Afterwards, based on the experimental data we estimated system’s modified DH parameters
that define geometric relations between consequent joint frames. Instead of the traditional
approach we solved the original nonlinear identification task. Identification results show that
there is a difference in range of [0.001 . . . 0.01] [rad] for angular displacements and in range
of [0.3 . . . 3] [mm] for linear displacements between nominal parameters provided by robot’s
manufacturer and its estimated values.
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(c) Conjugate-type algorithm with multistart, O1
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(d) Iterative algorithm, O1

Figure 5: LED frame Cartesian coordinates for M = 10 selected calibration poses

The proposed procedure is highly automated and can be implemented to improve
manipulator’s performance both right after the installation for initial calibration and on a
periodic basis, since estimated parameters can deviate because of the tear and wear and other
factors.
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Figure 7: Comparison of end-effector’s Cartesian coordinates for nominal and calibrated
geometric parameters
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