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Abstract. The paper presents new conditions, adequate in design of proportional-integral
virtual actuators and utilizable in fault-tolerant control structures which are stabilizable by
dynamic output controllers. Taking into account disturbance conditions and changes of variables
after the virtual actuator activation, the design conditions are outlined in terms of the linear
matrix inequalities within the bounded real lemma forms. Using tuning parameters in design,
and with suitable choice of the order of dynamic output controller, the approach provides a way
to obtain acceptable dynamics of the closed loop system after activation of the virtual actuator.

1. Introduction
To increase the reliability of systems, fault-tolerant control structures (FTC) usually fix a system
with faults so that it can continue its mission with certain limitations of functionality and quality.
Considering this, the different approaches were studied in FTC design (see, e.g., [1], [15] and the
references therein). The standard way of control reconfiguration discards the nominal controller
from the control loop and replace it with a new one so that its parameters are re-tuned in
occurred fault conditions and, in dependency on the remaining set of sensors and actuators, to
recover in a certain extent the performance given on the fault-free control system [16], [25], [27].

By contrast, instead of adapting the controller to the faulty plant, the virtual approach keeps
the nominal controller in the reconfigured closed-loop system and virtually adapt the faulty
plant to the nominal controller in such a way that the activated virtual reconfiguration block,
together with the faulty plant, imitates the fault-free plant. Since in healthy conditions the
virtual blocks are not active, and control is realized by the nominal controller, the design of
the virtual reconfiguration blocks may seem to be independent of the controller. Designated to
sensor faults the reconfiguration block is termed virtual sensor (VS), while in the case of actuator
faults is named virtual actuator (VA). Especially, an FTC strategy based on virtual actuator
approach for linear piecewise affine systems with actuator faults is presented in [21], for non-
linear systems that can be approximated by linear parameter-varying (LPV) models in discrete-
time or continuous-time description, this policy is proposed in [17], [22], [24], respectively, and
applying to continuous-time Lipschitz nonlinear systems, this practise is introduced in [6].

Until the first ideas of control reconfiguration by using of VA [2], [13] were summarized in
the books [19], [23], several aspects have been used in VA design. Introducing the generalized
VA it was shown [14] that reconfiguration after an actuator fault can be related to disturbance
decoupling. Then, subsequently, H∞-based VA synthesis was presented and the dual principle
was conveyed in [20]. In general, these conditions for VA design are formulated in terms of a
finite set of linear matrix inequalities (LMI) for proportional VAs.
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The vast majority of applications is realized in conjunction with static output controllers,
but this structure causes that the response of fault isolation has to be fast and the peaks of the
system variables, immediately after the activation of a VA, must be restrained [12]. Considering
characteristic changes of variables in FTC after VA activation, the synthesis of dynamic virtual
actuators (DOC) was stated in [8], [9], [10], [11]. The approach in the paper respects specifically
the generalized disturbance transfer matrix in proportional-integral (PI) VA design.

The paper is organized as follows. In Sec. 2, the H∞ approach is presented with results on
bounded real lemmas (BRL) for DOC design. Formulating the separation principle in Sec. 3,
the BRL based design methods are outlined for PI VA. Finally, the illustrating example is given
in Sec. 4 and some concluding remarks are stated in Sec. 5.

Throughout the paper, the following notations are used: xT , XT denotes the transpose of
the vector x and the matrix X, respectively, rank( · ) remits the rank of a matrix, for a square
matrix X < 0 means that X is a symmetric negative definite matrix, the symbol In indicates
the n-th order unit matrix, IR denotes the set of real numbers, IRn, IRn×r refer to the set of all
n-dimensional real vectors and n× r real matrices, respectively.

2. Dynamic Output Controllers
In the paper, there are taken into account systems described in fault-free conditions as

q̇(t) = Aq(t) +Buc(t) + V v(t) , (1)

y(t) = Cq(t) , (2)

where q(t) ∈ IRn stands up for the system state, uc(t) ∈ IR r denotes the control input,
y(t) ∈ IRm is the measurable output, v(t) ∈ IR rv is the vector of unknown disturbance, the
matrices A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n and V ∈ IRn×rv are finite valued.

It is assumed that the system is controlled by bi-proper DOC of the form

ṗ(t) = Jp(t) +Ly(t) , (3)

uc(t) = Mp(t) +Ny(t) (4)

and of an order p, where it can be accepted 1 ≤ p < n (reduced order), p = n (full order) and
n < p ≤ pm (upgraded order), while p(t) ∈ IR p is the vector of the controller state variables and
J ∈ IR p×p, L ∈ IR p×m, M ∈ IR r×p, N ∈ IR r×m.

To analyze the stability of the closed-loop system structure it can be formulated[
q̇(t)

ṗ(t)

]
=

[
A+BNC BM

LC J

] [
q(t)

p(t)

]
+

[
V

0

]
v(t) , (5)

y(t) =
[
0 Im

] [ 0 Ip

C 0

] [
q(t)

p(t)

]
. (6)

Introducing the notations

q•T (t) =
[
qT (t) pT (t)

]
, V •T =

[
V T 0

]
, I• =

[
0 Im

]
, (7)

A• =

[
A 0

0 0

]
, B• =

[
0 B

Ip 0

]
, C• =

[
0 Ip

C 0

]
,K• =

[
J L

M N

]
, (8)

where A• ∈ IR(n+p)×(n+p), B• ∈ IR(n+p)×(p+r), C• ∈ IR(p+m)×(n+p), V • ∈ IR(n+p)×rv ,
I• ∈ IRm×(p+m), it yields for stabilizable (A•,B•) and detectable (A•,C•) [3], [11],

q̇•(t) = A•
cq

•(t) + V •v(t) , A•
c = A• +B•K•C•. (9)

y•(t) = I•C•q•(t) (10)
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Proposition 1 [8] (BRL) The closed-loop system, consisting of the plant (1), (2) and DOC
(3), (4), is stable with the quadratic performance γ• if there exist a symmetric positive definite
matrix Q• ∈ IR(n+p)×(n+p), a regular matrix H• ∈ IR(p+m)×(p+m), a matrix Y • ∈ IR(p+r)×(p+m)

and a positive scalar γ• ∈ IR such that

Q• = Q•T > 0, γ• > 0 , (11) A•Q• +Q•A•T +B•Y •C• +C•TY •TB•T ∗ ∗
V •T −γ•Irv ∗

I•C•Q• 0 −Im

 < 0 , (12)

C•Q• = H•C•, (13)

where the generalized system matrices are defined in (7), (8).
When the above conditions hold

K• = Y •(H•)−1. (14)

Here and hereafter ∗ denotes the symmetric item in a symmetric matrix.

In order to adjust fault detection and isolation time to the dynamics of the closed-loop
system, the selection of the order p of the DOC be provided with a free tuning parameter in
control design. One serviceable method is based on incorporation a slack matrix into LMI design
conditions. This augmentation is proposed in the following theorem.

Proposition 2 [11] (enhanced BRL) The closed-loop system, consisting of the plant (1), (2)
and the DOC (3), (4), is stable with the quadratic performance γ• if for the given positive scalar
δ• ∈ IR there exist symmetric positive definite matrices R•, U• ∈ IR(n+p)×(n+p), a regular matrix
H• ∈ IR(p+m)×(p+m), a matrix Y • ∈ IR(p+r)×(p+m) and a positive scalar γ• ∈ IR such that

R• = R•T > 0, U• = U•T > 0, γ• > 0 , (15)
A•R• +R•A•T +B•Y •C• +C•TY •TB•T ∗ ∗ ∗

U• −R• + δA•R• + δB•Y •C• −2δ•R• ∗ ∗
V •T δ•V •T −γ•Irv ∗

I•C•R• 0 0 −Im

 < 0 , (16)

C•R• = H•C•, (17)

where the generalized system matrices are defined in (7), (8) and the positive δ• ∈ IR is the
tuning parameter.

When the above conditions hold then 14 yields.

Consider the case r = m (square plants), where with each output signal is associated a
reference signal. Such regime is called the forced regime and for DOC is defined as follows:

Definition 1 The forced regime for (1), (2) with DOC (3), (4) is given by the control policy

ṗ(t) = Jp(t) +Ly(t) , (18)

u(t) = Mp(t) +Ny(t) +Ww(t) , (19)

where w(t) ∈ IRm is desired output signal vector, and W ∈ IRm×m is the signal gain matrix.

Theorem 1 [10] If a square system (1), (2) is stabilizable by the control policy (18), (19), and

rank

[
A B
C 0

]
= n+m, (20)

then the matrix W takes the form

W = −
(
C(A−BMJ−1LC +BNC)−1B

)−1
. (21)
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3. PI Virtual Actuators
The state-space description of the system with a single actuator fault is considered as follows

q̇fa(t) = Aqfa(t) +Bfufa(t) + V v(t) , (22)

yfa(t) = Cqfa(t) , (23)

where qfa(t) ∈ IRn, ufa(t) ∈ IR r, yfa(t) ∈ IRm denote the faulty system state variables
vector, the vector of the acting control input variables and the vector of faulty output variables,
respectively, and the matrix Bf ∈ IRn×r is finite valued, while rank(Bf ) < rank(B). Moreover,
it is supposed that (A,Bf ) is controllable and ufa(t) is available for reconfiguration.

Analogously, using the same system variable notations, the state-space description of DOC,
acting on the system with a single actuator fault, but without DVA, is of the form

ṗfa(t) = Jpfa(t) +Lyfa(t) , (24)

uc(t) = Mpfa(t) +Nyfa(t) , (25)

where pfa(t) ∈ IR p denotes the controller state variables vector in the faulty system control.
To obtain the DVA state-space description, the following theorem is proven at first.

Theorem 2 (separation principle) The dynamic virtual actuator for the system with a single
actuator fault (22), (23) takes the form

ėfa(t) = (A−BfGP )efa(t)−BfGIepfa(t)−Buc(t) , (26)

żfa(t) = Cefa(t) . (27)

ufa(t) = −GPefa(t)−GIzfa(t) , (28)

where
efa(t) = qfa(t)− q(t) , epfa(t) = pfa(t)− p(t) , (29)

epfa(t) ∈ IR p, efa(t) ∈ IRn and GP ∈ IRr×n, GI ∈ IRr×m are real matrices.

Proof: Using (1), (2), (3) and (22), (23), (24) and proposing integral part of VA as follows

zfa(t) =

∫ t

0
C(qfa(r)− q(r))dr, żfa(t) = C(qfa(t)− q(t)) , (30)

then the expression of the common system variable model is
q̇fa(t)
q̇(t)
ṗfa(t)
ṗ(t)
żfa(t)

 =


A 0 0 0 0
0 A 0 0 0

LC 0 J 0 0
0 LC 0 J 0
C −C 0 0 0




qfa(t)
q(t)
pfa(t)
p(t)
zfa(t)

+


Bf 0
0 B
0 0
0 0
0 0


[
ufa(t)
uc(t)

]
+


V
V
0
0
0

v(t) .

(31)
Using the transform matrix T of the form

T = T−1 =


In 0 0 0 0
In −In 0 0 0
0 0 Ip 0 0
0 0 Ip −Ip 0
0 0 0 0 Im

 , T


qfa(t)
q(t)
pfa(t)
p(t)
zfa(t)

 =


qfa(t)
efa(t)
pfa(t)
epfa(t)
zfa(t)

 , (32)
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where efa(t), efa(t) are defined in (29), then (31) can be rewritten as
q̇fa(t)
ėfa(t)
ṗfa(t)
ėpfa(t)
żfa(t)

 =


A 0 0 0 0
0 A 0 0 0

LC 0 J 0 0
0 LC 0 J 0
0 C 0 0 0




qfa(t)
efa(t)
pfa(t)
epfa(t)
zfa(t)

+


Bf 0
Bf −B
0 0
0 0
0 0


[
ufa(t)
uc(t)

]
+


V
0
0
0
0

v(t) .

(33)
Defining the covering of the faulty control input as (28), the substitution of (28) in (33) leads to

q̇fa(t)
ėfa(t)
ṗfa(t)
ėpfa(t)
żfa(t)

 =


A −BfGP 0 −BfGI 0
0 A−BfGP 0 −BfGI 0

LC 0 J 0 0
0 LC 0 J 0
0 C 0 0 O




qfa(t)
efa(t)
pfa(t)
epfa(t)
zfa(t)



−


0
B
0
0
0

uc(t) +


V
0
0
0
0

v(t) .

(34)

Thus, the second and the fifth row of the equation (34) imply (26), (27). Obviously, in view of
the block structure of (34), the separation principle yields. This concludes the proof.

Corollary 1 The equations of the closed-loop faulty system with activated PI VA are as follows

q̇◦fa(t) = A◦
cq

◦
fa(t) + V ◦

fad
◦
fa(t) , A◦

c = A◦ −B◦
fG

◦ , (35)

yfa(t) = C◦q◦fa(t) , (36)

q◦fa(t) =

[
qfa(t)
zfa(t)

]
, d◦

fa(t) =

 GPq(t)
v(t)
q(t)

 , V ◦
fa =

[
Bf V 0
0 0 −C

]
, (37)

A◦ =

[
A 0
0 0

]
, B◦

f =

[
Bf Bf

0 0

]
, G◦ =

[
GP

GI

]
, C◦ =

[
C 0

]
, (38)

and q◦fa(t) ∈ IR(n+m), d◦
fa(t) ∈ IR(r+rv+n), A◦ ∈ IR(n+m)×(n+m), B◦ ∈ IR(n+m)×2r, C◦ ∈

IRm×(n+m), G◦ ∈ IR2r×(n+m), V ◦
fa ∈ IR(n+m)×(r+rv+n). Obviously, the stability of the closed-

loop system in the reconfiguration regime is determined by the system matrix A◦
c .

Proof: Using (29), the first and the fifth row of the equation (34) as well as (23) give

[
q̇fa(t)
żfa(t)

]
=

[
A−BfGP −BfGI

C 0

] [
qfa(t)
zfa(t)

]
+

[
Bf V 0
0 0 −C

]  GPq(t)
v(t)
q(t)

 , (39)

yfa(t) = Cqfa(t) =
[
C 0

] [ qfa(t)
zfa(t)

]
(40)

and using the relation[
A−BfGP −BfGI

C O

]
=

[
A 0
C 0

]
−

[
Bf Bf

0 0

] [
GP

GI

]
, (41)

with the notations (37), (38) then (39), (40) imply (35), (36), respectively. This concludes the
proof.
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Corollary 2 The state-space description of the PI VA (26), (27) with the covering of faulty
control input (28) is as follows

ė◦fa(t) = (A◦ −B◦
fG

◦)e◦fa(t)−B◦uc(t) , (42)

ufa(t) = −G◦e◦fa(t) , (43)

where

e◦fa(t) =

[
efa(t)
zfa(t)

]
, B◦ =

[
B
0

]
. (44)

In the autonomous regime the stability of the PI VA is determined by the same system matrix
A◦

c as stability of the closed-loop system in the reconfiguration regime.

Proof: Writing the equations (26)-(28) in the following form[
ėfa(t)
żfa(t)

]
=

[
A−BfGP −BfGI

C O

] [
efa(t)
zfa(t)

]
−

[
B
0

]
uc(t) , (45)

ufa(t) = −
[
GP GI

] [ efa(t)
zfa(t)

]
, (46)

respectively, and using the notations (38), (44) as well as the relation (41), then (45), (46) imply
(42), (43). This concludes the proof.

Corollary 3 The state-space description of DOC masked in inputs by PI VA and acting on the
system with a single actuator fault is of the form[

ṗfa(t)
uc(t)

]
=

[
J L
M N

] [
pfa(t)
yfa(t)

]
−

[
0 0
M N

] [
epfa(t)
Cefa(t)

]
, (47)

where yfa(t) is the measurable output of the closed-loop faulty system.

Proof: Using (23) and (29), then (2) can be rewritten as

y(t) = Cq(t) = C(qfa(t)− (qfa(t)− q(t))) = yfa(t)−Cefa(t) . (48)

Considering (48) as the input to the nominal DOC, by using (29) and (48) then (3), (4) imply[
ṗ(t)
uc(t)

]
=

[
J L
M N

] [
p(t)

y(t)

]
=

[
J L
M N

] [
pfa(t)− epfa(t)
yfa(t)−Cefa(t)

]
, (49)

[
ṗ(t)
uc(t)

]
=

[
J L
M N

] [
pfa(t)
yfa(t)

]
−

[
J L
M N

] [
epfa(t)
Cefa(t)

]
, (50)

respectively. Separating the equation given by the forth row of (34) as follows

ėpfa(t) = Jepfa(t) +LCefa(t) , (51)

(50) can be rewritten as[
ṗ(t)
uc(t)

]
=

[
J L
M N

] [
pfa(t)
yfa(t)

]
−

[
I
0

]
ėpfa(t)−

[
0 0

M N

] [
epfa(t)
Cefa(t)

]
. (52)

Since the time derivative of (29) takes the form

ėpfa(t) = ṗfa(t)− ṗ(t) , (53)

using (53) then (52) implies the equations of DOC covered by PI VA (47). This concludes the
proof.
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4. Design of PI VA
To offer a tuning parameter in PI VA design the following theorem is proven.

Theorem 3 (enhanced BRL) The closed-loop system, consisting of the plant with a single
actuator fault (22), (23), DOC (3), (4) and DVA (26), (27), is stable with the quadratic
performance γ◦ if for given positive δ◦ ∈ IR there exist symmetric positive definite matrices
R◦,U◦ ∈ IR(n+m)×(n+m), a matrix Y ◦ ∈ IR2r×(n+m) and a positive scalar γ◦ ∈ IR such that

R◦ = R◦T > 0, U◦ = U◦T > 0, γ◦ > 0 , (54)
A◦R◦ +R◦A◦T +B◦

fY
◦ + Y ◦TB◦T

f ∗ ∗ ∗
U◦ −R◦ + δ◦A◦R◦ + δ◦B◦

fY
◦ −2δ◦R◦ ∗ ∗

V ◦T
fa δ◦V ◦T

fa −γ◦Ir+rv+n ∗
C◦R◦ 0 0 −Im

 < 0 , (55)

where the system matrices are defined in (37), (38) and positive δ◦ is the tuning parameter.
When the above conditions hold

G◦ = Y ◦(R◦)−1. (56)

Proof: Since (35) implies

A◦
cq

◦
fa(t) + V ◦

fad
◦
fa(t)− q̇◦fa(t) = 0 , (57)

(q◦Tfa (t)S
◦ + δ◦q̇◦Tfa (t)S

◦)(A◦
cq

◦
fa(t) + V ◦

fad
◦
fa(t)− q̇◦fa(t)) = 0 , (58)

where S◦ ∈ IR(n+m)×(n+m) is symmetric positive definite and δ◦ ∈ IR is a positive scalar and by
considering the Lyapunov function candidate as follows

v(q◦fa(t)) = q◦Tfa (t)P
◦q◦fa(t) +

t
∫
0
(yT

fa(τ)yfa(τ)− γ◦d◦T
fa (τ)d

◦
fa(τ))dτ > 0 , (59)

where P ◦ ∈ IR(n+m)×(n+m) is symmetric positive definite matrix and γ◦ ∈ IR is square of the
H∞ norm of the transfer function matrix of the disturbance d◦

fa, then

v̇(q◦fa(t)) = q̇◦Tfa (t)P
◦q◦fa(t) + q◦Tfa (t)P

◦q̇◦fa(t) + yT
fa(t)yfa(t)− γ◦d◦T

fa (t)d
◦
fa(t) < 0 . (60)

and by adding (58) as well as its transpose to (60) and then inserting (36), it can see that

v̇(q◦fa(t)) = q̇◦Tfa (t)P
◦q◦fa(t) + q◦Tfa (t)P

◦q̇◦fa(t)

+ (q◦Tfa (t)S
◦ + δ◦q̇◦Tfa (t)S

◦)(A◦
cq

◦
fa(t) + V ◦

fad
◦
fa(t)− q̇◦fa(t))

+ (A◦
cq

◦
fa(t) + V ◦

fad
◦
fa(t)− q̇◦fa(t))

T (S◦q◦fa(t) + δ◦S◦q̇◦fa(t))

+ q◦Tfa (t)C
◦TC◦q◦fa(t)− γ◦d◦T

fa (t)d
◦
fa < 0 .

(61)

The inequality (59) can be written as

v̇(q◦c(t)) = q◦Tce (t)P
◦
ceq

◦
ce(t) < 0 , (62)

where

P ◦
ce =

 S◦A◦
c +A◦T

c S◦ +C◦TC◦ ∗ ∗
P ◦ − S◦ + δ◦S◦A◦

c −2δ◦S◦ ∗
V ◦T

faS
◦ δ◦V ◦T

faS
◦ −γ◦Ir+rv+n

 , q◦ce(t) =

 q◦fa(t)

q̇◦fa(t)
d◦
fa

 . (63)
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Since, using the Schur complement property, (63) can be rewritten as
S◦A◦

c +A◦TS◦ ∗ ∗ ∗
P ◦ − S◦ + δ◦S◦A◦

c −2δ◦S◦ ∗ ∗
V ◦T

faS
◦ δ◦V ◦T

faS
◦ −γ◦Ir+rv+n ∗

C◦ 0 0 −Im

 < 0 , (64)

inserting (35) in (64) and then pre-multiplying and post-multiplying the result by the matrix

T ◦
fe = diag

[
R◦ R◦ Ir+rv+n Im

]
, R◦ = (S◦)−1, (65)

it can be obtained
(A◦ +B◦

fG
◦)R◦ +R◦(A◦ +B◦

fG
◦)T ∗ ∗ ∗

R◦P ◦R◦ −R◦ + δ◦(A◦ +B◦
fG

◦)R◦ −2δ◦R◦ ∗ ∗
V ◦T

fa δ◦V ◦T
fa −γ◦Ir+rv+n ∗

C◦R◦ 0 0 −Im

 < 0 . (66)

Introducing the notations
U◦ = R◦P ◦R◦, Y ◦ = G◦R◦ (67)

then (66), (67) implies (55), (56), respectively. This concludes the proof.

Theorem 4 (BRL) The closed-loop system, consisting of the plant with a single actuator fault
(22), (23), DOC (3), (4) and PI VA (26), (27), is stable with the quadratic performance γ◦ if
there exist a symmetric positive definite matrix X◦ ∈ IR(n+m)×(n+m), a matrix Y ◦ ∈ IR2r×(n+m)

and a positive scalar γ◦ ∈ IR such that

X◦ = X◦T > 0, γ◦ > 0 , (68) A◦X◦ +X◦A◦T +B◦
fY

◦ + Y ◦TB◦T
f ∗ ∗

V ◦T
fa −γ◦Ir+rv+n ∗

C◦X◦ 0 −Im

 < 0 , (69)

where the generalized system matrices are defined in (37), (38).
When the above conditions hold

G◦ = Y ◦(X◦)−1. (70)

Proof: (compare [12]) Setting in (55) that U◦ = R◦ = X◦, δ◦ = 0 and by eliminating the
resulting zero row and zero column, then (55) implies (69). This concludes the proof.

5. Illustrative Example
The considered system is represented by the model (1), (2) with the matrix parameters [26]

A=


0.5432 0.0137 0 0.9778 0
0 −0.1178 0.2215 0 −0.9661
0 −10.5130 −0.9967 0 0.6176
2.6221 −0.0030 0 −0.5057 0
0 0.7075 −0.0939 0 −0.2120

, C=


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,

B =


−0.0318 −0.0548 −0.0548 −0.0318 0.0004
0.0024 0.0095 −0.0095 0.0024 0.0287

−2.2849 −1.9574 1.9574 2.2849 1.4871
−0.4628 −0.8107 0.8107 −0.4628 0.0024
0.0944 −0.1861 −0.1861 0.0944 −0.8823

 , V =


0.7593
0.4116
0.8793
0.0272
0.0389

 , σ2
v = 7.1×10−3.
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The system is controlled by DOC (5), (6), whose parameters were determined using (15)-(17)
for order p = 1 and the tuning parameter δ• = 10. Using the SeDuMi package [18] then with
γ• = 13.4697 the DOC matrix parameters take the values

J = −1.3767 , L = 10−8 [ −0.0673 −0.0049 −0.1764 −0.0886
]
,

M = 10−8


−0.2501
0.3877
0.0318
0.0714

−0.0043

 , N =


9.9037 −18.8161 5.2467 16.0287
8.8524 11.2393 4.6291 −10.3231
14.8863 0.4394 7.7691 −0.7511
6.5785 −0.7130 3.4584 1.3946

−2.8555 −6.3480 −1.4051 9.3270


and the signal gain matrix W is calculated by (21) as

W =


−5.1176 −0.1008 0.0521 −0.2320
−7.0937 0.5788 −0.4934 −1.4523

−11.5871 −0.2253 1.4234 0.6632
−3.0013 −0.7243 −1.0022 3.3029
2.6838 2.3520 −0.6184 −5.3107

 .

The closed-loop system is stable with the closed-loop system matrix eigenvalue spectrum

ρ(A• +B•G•C•) =
{
−4.3447 −1.9657 −0.5713 −1.2897 −1.0802 −1.3767

}
.

The control reconstruction by PI VA is illustrated for single fault of the second actuator, where
the extended system matrices are constructed as follows:

A◦ =



0.5432 0.0137 0 0.9778 0 0 0 0 0
0 −0.1178 0.2215 0 −0.9661 0 0 0 0
0 −10.5130 −0.9967 0 0.6176 0 0 0 0
2.6221 −0.0030 0 −0.5057 0 0 0 0 0
0 0.7075 −0.0939 0 −0.2120 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0


,

B◦
f =



−0.0318 0 −0.0548 −0.0318 0.0004
0.0024 0 −0.0095 0.0024 0.0287

−2.2849 0 1.9574 2.2849 1.4871
−0.4628 0 0.8107 −0.4628 0.0024
0.0944 0 −0.1861 0.0944 −0.8823
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, C◦ =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 ,

V ◦
fa =



−0.0318 0 −0.0548 −0.0318 0.0004 0.7593 0 0 0 0 0
0.0024 0 −0.0095 0.0024 0.0287 0.4116 0 0 0 0 0

−2.2849 0 1.9574 2.2849 1.4871 0.8793 0 0 0 0 0
−0.4628 0 0.8107 −0.4628 0.0024 0.0272 0 0 0 0 0
0.0944 0 −0.1861 0.0944 −0.8823 0.0389 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1


.
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For this fault scenario the closed-loop system with above designed parameters is instable and
PI VA has to be activated to stabilize the faulty system.

The parameters of PI VA were determined using (54), (55), conditioned by the tuning
parameter setting δ◦ = 0.217. Exploiting the SeDuMi package, with γ◦ = 4.3700 the PI VA gain
matrices are

GP =


−18.3055 0.3354 −0.1140 −4.0384 −0.5380

0 0 0 0 0
−10.1172 −1.6384 −0.0834 −1.1921 0.2553
−9.0562 −3.1597 −0.1456 −2.6616 1.0467
−0.7671 2.5586 0.3847 −0.4279 −3.0123

 ,

GI =


−2.3650 −0.2736 1.1260 −0.3141

0 0 0 0
−1.6237 −0.2461 1.2897 −0.0650
−0.9579 −0.1727 0.1167 0.1702
−0.0191 0.5438 −0.1140 −0.3134

 ,

The eigenvalue spectrum of the matrix A◦
c = A◦ −B◦

fG
◦ is

ρ(A◦
c) =

{
−1.1166 −0.1636 −0.1433

−1.4956± 1.0372i −1.5616± 0.7682i −0.1928± 0.0352i

}
and this spectrum determines the dynamics of the closed-loop system after activation of PI VA.
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Figure 1. System output response
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Figure 2. Control variables

In Fig. 1 and Fig. 2 are shown the time responses of the system output and control variables
for the control realized by DOC of order p = 1 in the controller forced mode and PI VA acting
on the faulty system. The single second actuator fault occurred at time instant t = 15 s and PI
VA was activated at time instant t = 17 s. In simulation, the initial condition was set q0 = 0 and
the desired output values w(t) = [ 0.3 0.4 0.5 0.6 ] were changed step-wise at the time instant
t = 70 s to w(t) = [ 0.7 0.2 0.3 0.5 ]. Although the values of output variables were achieved, the
output and control variables peaks after the activation of PI VA are excessively high.

Within the same simulation conditions, Fig. 3 and Fig. 4 show the time responses of the
system output and control variables for control realized by DOC of order p = 4 and Fig. 5 and
Fig. 6 show the time response of the same variables for control with DOC of order p = 7 and
PI VA. It is obvious that an appropriate conjunction of orders of DOC gives the possibility to
significantly reduce the variables peaks after activation of VAs. Note, there are no rules for the
optimal order selection of DOC [10].
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Figure 3. System output response
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Figure 4. Control variables
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0 50 100 150
−6

−4

−2

0

2

4

6

8

10

12

time t[s]

In
pu

t s
ig

na
l u

(t
)

 

 
u

1
(t)

u
2
(t)

u
3
(t)

u
4
(t)

u
5
(t)

Figure 6. Control variables

6. Concluding Remarks
A key contribution of the proposed approach is the blending of the virtual actuator technique
and the output control principle in a unique dynamic scheme, able to provide fault tolerance
against actuator faults with such acceptable responses of the system variables, primarily after
activation of DVA, which cannot by reached by applying a static output controller on the exactly
same plant.

The proposed model of the dynamic effect of a virtual actuator in the FTC structure relies
on newly introduced generalized disturbance patterns, reflecting fading of the nominal system
state variables after DVA activation. This allows to include in the DVA design conditions the
disturbance input/system output model property by H∞ norm approach.

The application of the proposed approach requires that a fault detection and isolation
subsystem is available. However, it becomes clear that the desired performances depend on the
fault isolation time, but a suitable order conjunction of the both dynamic components allows
significantly extend the time limit of fault detection.
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