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Abstract. The paper deals with dual adaptive control problem, where the functional
uncertainties in the system description are modelled by a non-parametric Gaussian process
regression model. Current approaches to adaptive control based on Gaussian process models
are severely limited in their practical applicability, because the model is re-adjusted using all
the currently available data, which keeps growing with every time step. We propose the use
of recursive Gaussian process regression algorithm for significant reduction in computational
requirements, thus bringing the Gaussian process-based adaptive controllers closer to their
practical applicability. In this work, we design a bi-criterial dual controller based on recursive
Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control
form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable
performance with the full Gaussian process-based controller in terms of control quality while
keeping the computational demands bounded.

1. Introduction
The problem of adaptive control of non-linear stochastic systems with unknown functions offers
an interesting challenge [1–4]. It can be understood as a natural extension of the adaptive control
from a class of linear systems and non-linear systems with unknown parameters to the complex
systems with functional uncertainty. Sometimes this attractive direction of adaptive control is
also called a functional adaptive control [1].

Since an optimal solution to this problem is practically impossible to find, a considerable
attention has been focused on various sub-optimal solutions, which preserve a key aspects of
the stochastic control principles originated from the work of Feldbaum [5]. It means, that a
controller should respect the following conflicting goals:
• achieve tracking performance - a controller should be cautious and respects the uncertainty

in model knowledge,
• reduce the uncertainty in the future - a controller should probe the system by an appropriate

exciting signal.
and is referred to as a dual control [5, 6].

In recent years, several sub-optimal dual controller methods have been applied successfully
in the functional approach for their positive qualities (superior control quality and admissible
computational demands) and subsequently extended in several directions [7–11]. Although a
partial progress was achieved in a functional adaptive control, one of the open and challenging
issues remains; namely, finding of a suitable model of the controlled non-linear system. A common
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feature of most of the above mentioned solutions to the functional approach is that they are
based on parametric models represented by various types of neural networks. These models bring
difficulties such as the need to optimise the model structure or the necessity to solve a non-linear
estimation problem.

Recently, in the system identification community, non-parametric Gaussian process (GP)
regression models have attracted a marked interest as an alternative tool to the parametric
models. A GP can be effectively thought of as a prior distribution over functions themselves,
where functions can be informally regarded as infinite dimensional vectors of function values.
Gaussian process (GP) models do not possess a fixed structure and thus are very flexible. They
allow to combine tractable Bayesian inference with non-parametric nature of the model and are
highly effective in modelling strongly non-linear phenomena. GP models have been utilised in
many applications including non-linear filtering [12–15], model predictive control [16], non-linear
system identification [17], time series forecasting [18], reinforcement learning [19, 20] or numerical
quadrature [21]. Great advantage of parametric models is that they lend themselves nicely to
the possibility of devising a recursive estimation algorithm. As GPs are non-parametric models,
the development of a recursive algorithm is much more complicated. Typically, it is necessary
to consider some kind of GP approximation to counteract the problem of increasing data size.
Recently increased effort has been given to the design of original algorithms, which eliminate
this drawback [22–26].

So far, GP modelling was utilised in functional adaptive approach only in a few pioneering
works [3, 27]. It should be noted, that the GP models were implemented exclusively in a non-
recursive form, causing a continuous increase of the computational demands with time, which
significantly reduces their practical applicability. In another words, an effective dual controller
based on GP model has not been realised yet.

Based on the motivation point, the main goal of the paper is twofold: 1) Design a functional
adaptive control using the recursive GP model suggested in [28] and 2) Compare the proposed
solution with the non-recursive case presented in [27] through extensive Monte-Carlo analysis in
a numerical example.

The rest of the paper will present a description of the problem formulation in section 2,
followed by a recursive GP model based non-linear system identification in section 3. In section
4, dual adaptive control design is completed. A numerical illustration is presented in section 5
and finally, section 6 concludes the paper.

2. Problem Formulation
The dynamical system to be controlled is a non-linear stochastic discrete time-invariant system
given in an input-output representation

S : yk+1 = f(xa
k) + g(xa

k)uk + ek+1, (1)

where f, g : Rny+nu+1 → R are unknown non-linear functions, xa
k =[yk,. . . ,yk−ny ,uk−1,. . . ,uk−nu]>∈

Rny+nu+1 is the state vector, uk and yk are input and output signals at discrete time instants
k ∈ 0, 1, . . . ,N-1 and {ek} is an additive noise and the following assumptions A1-A4 are consid-
ered:

A1: The non-linear functions are smooth (infinitely differentiable), i.e. f(xa
k), g(xa

k) ∈ C∞.
A2: The structural parameters ny and nu of the system are known.
A3: The system has a globally uniformly asymptotically stable zero dynamics and the non-linear

function g(xa
k) is bounded away from zero for all xa

k [29].
A4: {ek} ∈ R is a known Gaussian sequence with zero mean and variance σ2

e .
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The proposed control law is of an explicit-type, suboptimal dual cost function based on the
bi-criterial dual (BD) controller developed by Filatov et al. [30] for linear systems. This cost
function explicitly includes two separate criteria, where each criterion introduces one of the
mutually opposing goals between estimation and control; probing and caution. The final control
law will be obtained by a subsequent minimisation of the criteria (2) and (4).

The first criterion in the bi-criterial approach is suggested in the following form

Jc
k = E

{
(yk+1 − rk+1)2 + q u2

k

∣∣∣Ik
}
, (2)

where Ik is the information state containing all measurable inputs and outputs available up to
time instant k and rk+1 is a bounded reference signal and q ≥ 0 is a design parameter penalising
the control action.

The criterion (2) evaluates quality of the control and involves minimisation of the expected
value of the tracking error. The resulting control

uc
k = argmin

uk
Jc

k (3)

respects uncertainties in the knowledge of the unknown system functions (1), and is equal to
cautious control.

The second criterion in the bi-criterial approach is chosen as

Ja
k = −E

{
(yk+1 − ŷk+1)2

∣∣∣Ik
}
, (4)

where ŷk+1 is a one step prediction of the output, which will be obtained from the GP model.
This criterion evaluates the quality. It should accelerate the estimation process for future
control improvement by increasing the predictive error value. The controller provides an optimal
excitation added to the cautious control and determines magnitude of the probing signal.

Finally, the BD control uk is then obtained by

uk = argmin
uk∈Ω

Ja
k , (5)

where Ω defines a Pareto set as a region of permissible values of uk representing an efficient
trade-off between criteria Ja

k and Jc
k. The region Ω is a design parameter. The Jc

k contribution
should be proportional to the uncertainty of the model to provide a probing component of the
control signal uk rich enough.

From relationships describing adaptive controller (2) – (5) it is clear that a suitable model
description is necessary to complete the control design. The system model will be based on
a non-parametric GP regression and control design will be performed as follows. First, a GP
model of the system (1) will be specified. Then a recursive algorithm for the GP model will
be proposed. Subsequently, the recursive GP model will be used to complete derivation of the
control law. Finally, the whole procedure will be algorithmically summarised.

3. Gaussian Process Regression Model
This section covers the identification of a non-linear stochastic system (1) by means of the GP
regression algorithm. The full Gaussian process (FGP) model is described first, in order to
show its main difficulties, when applied in situations where data arrive sequentially (which is
exactly the case in adaptive control). Introducing the non-recursive FGP model also serves as a
motivation for the recursive GP regression algorithm proposed in the subsequent part.
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3.1. Full Gaussian process model
The GP can be seen as an extension of the multivariate normal distribution to the normal
distribution over infinite-dimensional random vectors (random functions). This means, that
the GP, akin to the Gaussian distribution, is fully determined by its first two moments; mean
and variance. Let xk = [ (xa

k)>, uk ]> be a vector of dimension D = ny + nu + 2 and let
yk = [y1, . . . , yk]>, uk = [ u0, . . . , uk−1 ] and Xk = [x0, , . . . , xk−1] be a D × k matrix. Then, a
non-parametric GP model of the unknown non-linear stochastic system (1) can be defined in the
following general form

M : ŷk+1 = GP(m+, k+), (6)

where posterior mean m+ and variance k+ fully describe the GP posterior GP (m+, k+) and are
given by

m+ = m(xk ; θ) + k(xk, Xk ; θ) k(Xk, Xk ; θ)−1yk, (7)
k+ = k(xk, xk ; θ) − k(xk, Xk ; θ) k(Xk, Xk ; θ)−1k(Xk, xk ; θ), (8)

where m(xk | θ) : RD → R is a mean function and k(xk, xk | θ) : RD × RD → R is a
covariance function. The mean and covariance function are parametrised by a vector of free
hyper-parameters θ. The setting of the optimal values of θ is discussed in Section 3.2.2 and the
dependence of m(·) and k(·, ·) on θ will be omitted for a brevity of notation. Moreover, it holds
that k(xk, Xk) = [ k(xk, x0), . . . , k(xk, xk−1) ], k(Xk, xk) = k(xk, Xk)> and k(Xk, Xk) is an
k × k prior covariance matrix of elements k(xi, xj) for i, j ∈ 0, . . . , N − 1.

The mean and covariance function are chosen by the designer and imposes certain assumptions
on the model. Compared to the parametric regression models, where the assumptions on the
modelled function are typically expressed in a fixed model structure, the assumptions of non-
parametric GP models, expressed by the choice of covariance function, are much weaker. There
are many covariance functions to choose from, each expressing different assumptions about the
modelled phenomena. For comprehensive account of covariance functions and their relationship
to other models see [31].

Without loss of generality, zero mean function m(·) will be further assumed. The covariance
function k(·, ·) is chosen to ease the design of the adaptive BD controller in later sections and is
inspired by [32]. The mean and covariance functions are thus given by

m(xk) ≡ 0, (9)
k(xi, xj) = kf (xa

i , x
a
j ) + kg(xa

i , x
a
j )uiuj + kn(xa

i , x
a
j ), (10)

where

kf (xa
i , x

a
j ) = `2f exp

(
−1

2(xa
i − xa

j )>Λ−1
f (xa

i − xa
j )
)
, (11)

kg(xa
i , x

a
j ) = `2g exp

(
−1

2(xa
i − xa

j )>Λ−1
g (xa

i − xa
j )
)
, (12)

kn(xi, xj) = σ2
e δij , (13)

and where `f , `g are vertical lengthscales, Λf = diag(λ2
f1, . . . , λ

2
fD) (analogously

for Λg) are horizontal lengthscales and σ2
e is a noise variance. The symbol δij is

Kronecker delta. The above mentioned quantities are hyper-parameters forming a vector
θ = [ `2f , λf1, . . . , λfD, `

2
g, λg1, . . . , λgD ]>. The term kn is a covariance function of a white

noise with variance σ2
e and the covariance functions kf and kg are selected as squared exponential

covariance function with automatic relevance determination, which is a common choice in a
number of applications [14, 17].
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The equations (6)–(13) describe model of the system (1) and provide a procedure how to
obtain an one-step prediction ŷk+1 and variance var(yk+1), which may be useful component in the
control law derivation [27]. Note that, the equations (7)–(8) show that the prediction is calculated
using all the currently available data. This is the distinguishing feature of non-parametric models
in general. In offline settings, where all the data are readily available, calculating model prediction
calls for the inversion of large covariance matrix k(Xa

k ,X
a
k ). In cases where the data arrives

sequentially, the situation is even worse, because the size of the covariance matrix k(Xk,Xk)
grows with every new measurement, leading to ever increasing computational demands for matrix
inversion. This is why controllers based on this non-recursive model form cannot be seriously
considered for practical applications. To alleviate this problem, the recursive Gaussian process
regression algorithm is proposed in the next section.

3.2. Recursive Gaussian process model
The proposed recursive Gaussian process algorithm is described in two steps. The recursive
relations for mean and variance functions calculation is briefly outlined first. This is then followed
by a procedure for hyper-parameter learning. To keep the presentation succinct, only the basic
results obtained in [25] and [28] are described. For detailed derivation of the algorithm, interested
reader is referred to the previously cited references.

3.2.1. RGP algorithm Huber [25] proposed the recursive Gaussian process (RGP) regression
algorithm as a solution to the problem of GP regression for sequential data processing. The main
idea employed in RGP is to use a predefined set of basis vectors, which are sequentially updated
and effectively summarise the information obtained from currently available measurements about
the approximated function on a user-defined domain. Instead of using all the data for prediction,
as in the case of FGP, predictions of RGP model are computed from the basis vectors. The
number of basis vectors s � N (where N is the number of maximum data points) is fixed
throughout the operation of the algorithm, which enables to keep the computational demands in
check. On the other hand, using only fixed amount of basis vectors acts as an approximation to
the full GP approach characterised by the equations (7) and (8), because the prediction is no
longer a function of all the previously seen data.

Let X̃ = [x̃1, x̃2, . . . , x̃s] denote a D × s matrix of the basis vectors. The RGP algorithm
then calculates moments m+ and k+ at every time step k > 0 by incorporating information from
the new observation yk. In summary, the RGP algorithm operates by means of the following two
sets of equations

update


Gk = Ch

k−1J
>
k−1

(
Cp

k + σ2
e

)−1
,

µh
k = µh

k−1 + Gk

(
yk − µp

k

)
,

Ch
k = Ch

k−1 − GkJk−1C
h
k−1,

(14a)

(14b)
(14c)

predict


Jk = ks

k K
−1,

µp
k+1 = Jk µ

h
k ,

Cp
k+1 = kss

k + Jk

(
Ch

k − K
)
J>k ,

(15a)
(15b)

(15c)

where K = k(X̃, X̃) is an s × s matrix of elements k(x̃p, x̃q) for p, q ∈ 1, . . . , s. The quantities
ks

k and kss
k are computed as

ks
k = k(xk, X̃) = ksf

k + ksg
k uk, (16)

kss
k = k(xk, xk) = kssf

k + kssg
k u2

k + kssn
k (17)
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with

ksf
k = kf (xa

k, X̃
a), (18)

ksg
k = kg(xa

k, X̃
a) ◦ u, (19)

kssf
k = kf (xa

k, x
a
k), (20)

kssg
k = kg(xa

k, x
a
k), (21)

kssn
k = kn(xa

k, x
a
k), (22)

where the symbol ◦ denotes element-wise product of two vectors, X̃a is the matrix of D− 1 rows
of X̃ and u denotes the last row of X̃. The equations (14a) – (14c) update the function value
estimates µh

k and their covariance Ch
k using the last output measurement yk. The equations

(15a) – (15c) are used to calculate the RGP model output prediction ŷk+1 = µp
k+1 and predictive

variance var(yk+1) = Cp
k+1.

3.2.2. Hyper-parameter learning procedure The RGP algorithm is able to reduce the
computational demands for GP regression in sequential data processing. Note however, that
in order to compute the RGP model prediction given by equations (15a) – (15c), the hyper-
parameters θ have to be determined.

A preferred method for setting of the hyper-parameters is based on maximisation of the
marginal likelihood. In practice it is convenient to work with the logarithm of marginal likelihood,
which for a Gaussian likelihood, has an analytic form

log p(yk |Xk,θ) = −1
2 y
>
k

(
K(θ) + σ2

eI
)−1

yk︸ ︷︷ ︸
data fit

−1
2 log

∣∣∣K(θ) + σ2
eI
∣∣∣︸ ︷︷ ︸

complexity penalty

−N2 log 2π, (23)

where K(θ) = k(Xk, Xk; θ). The marginal likelihood consists of a data fit term, which
encourages complex models that fit data well, and a complexity penalty term, which penalises
models that are too complex. This ensures that maximisation of (23) will not result in model
over-fitting or under-fitting [33]. The disadvantage is that the optimisation problem is non-linear,
which makes finding of the global maxima very difficult. It is helpful to point out, that the
objective (23) is a function of θ, where the data remain fixed. Note, that using this technique the
optimal hyper-parameters are determined directly from the data and therefore, their optimisation
takes place before the system output prediction is generated.

Using (23) for setting of hyper-parameters in RGP algorithm is certainly possible, but
note, that this would again introduce the problem of increasing computational demands as
the covariance matrix K(θ) in the marginal likelihood is constructed from all available data.
Evaluating (23) would thus become harder with every new measurement processed.

We propose an approximation of (23) by replacing the noisy observations yk with estimates
of the function values µh

k at the basis vectors X̃. The approximate marginal likelihood is then
given by

log p(yk |Xk,θ) ≈ log p
(
µh

k | X̃,θ
)

= −1
2
[
(µh

k)>K̃(θ)−1µh
k + log

∣∣∣K̃(θ)
∣∣∣ + s log (2π)

]
, (24)

where K̃(θ) = k(X̃, X̃; θ). Since the number of basis vectors s is pre-defined by the user and
fixed throughout the operation of the algorithm, the computational demands for evaluating the
approximated marginal likelihood (24) do not grow with time. In practical implementation, the
objective (24) is maximised in every time step using an iterative optimisation solver, where the
initial guess are the hyper-parameters from the previous time step. To keep the computational
requirements in check, we also limit the maximum number of solver iterations.

4. Bi-criterial Dual Control Design
This section is focused on the BD control derivation based on the idea of a multi-objective
optimization introduced in Section 2.
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4.1. Control law derivation
Let f̂k+1 = ksf

k K−1µh
k and ĝk+1 = ksg

k K
−1µh

k . Then the GP model mean (15b) can be rewritten
to the following form

ŷk+1 = f̂k+1 + ĝk+1uk. (25)

The GP model variance (15c) can be rearranged as

var(yk+1) = µku
2
k + νkuk + ck, (26)

with Γ = K−1(Ch
k −K)(K−1)>, µk = kssg

k + ksg
k Γ(ksg

k )>, νk = ksg
k Γ(ksf

k )> + ksf Γ(ksg
k )> and

ck = kssn
k + kssf

k + ksf
k Γ(ksf

k )>. The first of the BD criteria (2) can be minimized using (25),
(26) and the cautious control component uc

k is given as

uc
k =

(
rk+1 − f̂k+1

)
ĝk+1 − 1

2νk

ĝ2
k+1 + µk + q

. (27)

The second BD criterion (4) can be rewritten by reusing (26) as

Ja
k = − var(yk+1) = −µku

2
k − νkuk − ck. (28)

In order to complete the derivation we need to specify the region Ω. A suitable choice is a
symmetrically distributed region around the caution control uc

k defined as

Ωk = [uc
k − δ, uc

k + δ], (29)

where the optional parameter δ fixes the domain Ω as a constant.
It is obvious, that the criterion Ja

k is a concave function of variable uk. Hence, the extreme
will inevitably be found within the boundary of the domain Ω. Therefore, it is possible to state
the following relation

uk = uc
k + η · sign (Ja

k (uc
k − δ) − Ja

k (uc
k + δ)) , (30)

where η > 0 is a designer parameter, which represents the gain of the probing component. The
expression in brackets can be expressed as

Ja
k (uc

k − δ) − Ja
k (uc

k + δ) = δ(2µku
c
k + νk). (31)

The control law derivation is finalized using (31) in (30) as

uk = uc
k + η · sign (2µku

c
k + νk) . (32)

The equations (27) and (32) represent the final BD adaptive control law, where the first term
is the cautious control component and second term denotes probing control component. The
probing part is a function of variable µk and νk which represent the uncertainty in the system
functions f(xak) and g(xa

k). As a consequence, a higher value of the probing control component
is generated in the case of high model uncertainty and vice versa.
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4.2. BD-RGP control algorithm
The following few basic steps summarize the operation of the proposed BD-RGP adaptive
controller

RGP-based Bicriterial Dual Control Algorithm
Step 0: Initialize GP model hyper-parameters θ = θ0, basis vector locations X̃

and set µh
0 ∼ Uniform(0, 1), Ch

0 = k(X̃, X̃ ; θ0); set system initial
condition and controller parameters, set k = 1

Step 1: Measure the system output yk.
Step 2: Update the RGP model µh

k , C
h
k using (14a) – (14c).

Step 3: Optimise hyper-parameters as θ = arg maxθ log
(
p
(
µh

k |X̃,θ
))

.
Step 4: Generate control action uk from relations (27) and (32).
Step 5: Predict system output µp

k+1 and predictive variance Cp
k+1 by (15a)–(15c).

Step 6: k = k + 1, go to Step 1.

5. Numerical Example
We tested the proposed bi-criterial dual controller on the following example of non-linear stochastic
discrete-time system

yk+1 = 1.5yk

1 + y2
k

+ (2 + cos(yk))uk + ek+1, (33)

where ek+1 is a white Gaussian noise with variance σ2
e = 0.0025. Note, that the vector of

regressors xk = [yk, uk] is now two-dimensional. The bi-criterial dual controller with the full
Gaussian process model (BD-FGP) as well as the recursive GP model (BD-RGP) used the same
set of initial hyperparameter values θ = [0, 0, 0, 0]. The set of basis vectors for the BD-RGP was
initialized as a rectangular grid of 7× 5 points in the interval [−2, 2]× [−1, 1].

The main motivation for designing the BD-RGP algorithm was to alleviate the prohibitive
computational demands of the BD-FGP. The Figure 1 is a result of averaging execution time
measured in each control loop iteration of both algorithms over 100 Monte Carlo runs. Clearly,
the demands of the BD-RGP algorithm remain constant, thus making it superior alternative to
the BD-FGP in this regard.
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Figure 1: Average execution time per time step of the BD-FGP and BD-RGP control algorithms.
The computational requirements of the BD-RGP controller remain constant, while the demands
BD-FGP controller continue to grow indefinitely with every time step.
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Table 1: Control quality of the bicriterial dual controller based on full (BD-FGP) and recursive
Gaussian process (BD-RGP) model. Results are averaged over 100 Monte Carlo simulations.
Variance estimates of the means of the criteria were obtained by bootstrap method.

Controller Ĵ1 var(Ĵ1) Ĵ15 var(Ĵ15)
BD-FGP 1.08e-01 2.02e-04 1.12e-02 3.79e-05
BD-RGP 1.07e+01 9.66e+00 1.42e-02 1.01e-04

The other experiment was focused on the assessment of control quality, which was measured
by

Jm = 1
N

N∑
k=m

(yk+1 − rk+1)2, (34)

where m ≥ 1 is the offset. We compared the control quality of the BD-FGP controller, which
uses the exact non-recursive GP model, with the BD-RGP controller, which uses the approximate
recursive GP model. Ideally, we would like the quality of the approximate BD-RGP to remain
close enough to the exact BD-FGP. Each controller was simulated for N = 60 time steps and the
reference signal rk was chosen such that, a one half is a square wave and the other half is a sine
wave.

Table 1 compares the control quality of the BD-FGP and the BD-RGP controllers for offsets
m = 1, which evaluates the criterion using the whole trajectory, and m = 15, which ignores
the first few steps to assess the behaviour after the GP model adaptation. The quality of the
BD-RGP is two orders of magnitude worse than that of the BD-FGP, when the whole trajectory
is taken into account. This is caused by the longer adaptation of the RGP model. However,
the values of the offset criteria indicate that this adaptation quickly disappears (after about 15
time steps) and the BD-RGP control quality is then close to the BD-FGP. The reason for this
behaviour is the fact, that the RGP model is an approximation of the exact FGP model, and as
such takes longer to adapt (slower convergence). This intuition is corroborated by our earlier
results published in [34].

Figure 2 compares the two dual controllers in terms of the system output response to the
reference signal. The output response for the BD-RGP is more erratic at the start, which explains
the results in the Table 1, but then stays close to the BD-FGP output response. Figure 3 shows
the evolution of the FGP and the RGP model predictive uncertainty. The RGP model provides
more conservative predictive variances across the whole trajectory, which is a desirable behaviour
considering the RGP is an approximate model to the FGP.

6. Conclusions
In this work, we proposed the use of the RGP regression model for reducing computational
demands of the BD controller based on full GP model, when applied for control of non-linear
discrete time-invariant stochastic systems with functional uncertainties. The GP regression
models are applied for the approximation of unknown functions in the system description.
We utilize an approximation to the marginal likelihood, which makes it possible to keep the
computational demands fixed when learning the GP model hyper-parameters. We derived the
bi-criterial dual controller with RGP model, whose computational demands do not increase with
time. After the model adaptation, the control quality of the proposed BD-RGP controller stays
close to the BD-FGP controller.
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Figure 2: Comparison of the typical system output response yk+1 to a reference signal rk for the
BD-FGP and BD-RGP controllers. The controller using the approximate recursive GP model
(BD-RGP) exhibits slower adaptation than the BD-FGP.
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Figure 3: Comparison of model variances (gray band); the RGP model predictive variance (right)
is more conservative than that of the FGP model (left). Since RGP model is an approximation
of the FGP, this is a desirable behaviour.
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