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Abstract. Microwave imaging methods are useful for non-destructive inspection of dielectric 

targets. In this work, a numerical technique for solving the 3D Lippmann-Schwinger integral 

equation of the inverse scattering problem via Gauss-Newton linearization in Banach spaces is 

analysed. More specifically, two different approximations of the Fréchet derivative are proposed 

in order to speed up the computation. Indeed it is well known that the computation of the Fréchet 

derivative is generally quite expensive in three dimensional restorations. Numerical tests show 

that the approximations give a faster restoration without loosing accuracy. 

1. Introduction

As it is well known the electromagnetic inverse scattering problem is the basic formulation for

microwave imaging methods. Although this problem has been suitably studied from a theoretical point 

of view, new methods are continuously developed to face new and challenging applications. To inspect 

dielectric targets, several different techniques can be adopted. These techniques has been devised in the 

last decades starting from some pioneering research results [1],[2]. Some examples can be found in [3]-

[12] and in the references therein.  

In this context, an approach for solving the Lippmann-Schwinger integral equation of the inverse 

scattering problem by lossy dielectric targets has been proposed in [13]. It is based on an inexact-Newton 

method and constituted by two nested loops, and it has been tested versus experimental input data [14]. 

A review of the obtained results have been reported in [15]. Although such results appear to be quite 

satisfactory, in particular in dealing with the ill-posedness of the considered inverse problem, one of the 

main drawback is related to the significant over-smoothing effects associated to the properties of the 

Hilbert space in which the approach has been developed. In order to mitigate this effect, a new 

formulation has been proposed in [16], in which the inverse scattering equations have been solved in 𝐿𝑝

Banach spaces. 

Despite the increasing of the formulation complexity, the new approach has led to a noticeable 

reduction in the reconstruction errors as compared with solutions developed in the Hilbert spaces. So 

for, the new approach has been applied to two-dimensional configurations for which a scalar formulation 

can be used. In the present paper, this method is preliminary extended to treat three-dimensional targets, 

where the computation of the Fréchet derivative becomes numerically expensive. This way, two 

different low-cost approximations of the Fréchet derivative, namely the frozen [17] and the Broyden 

update [18], are investigated in order to obtain a faster reconstruction algorithm. 
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2. The 3D microwave inverse scattering model

An unknown dielectric target, located inside an investigation cube 𝑉𝑖𝑛𝑣, is illuminated by one or more

incident known electric fields, generated by proper emitting antennas located outside the cube. For any 

illumination, at any point 𝐫 of the whole three-dimensional space, the electromagnetic interaction 

between the dielectric object and the incident radiation gives rise to a total electric field 𝐄𝑡𝑜𝑡(𝐫) =
𝐄𝑖𝑛𝑐(𝐫) + 𝐄𝑠𝑐𝑎𝑡𝑡(𝐫), which is the sum of the incident and the scattered electric fields.

In the inverse scattering model, the measurement of 𝐄𝑡𝑜𝑡(𝐫) by several receiving antennas located in

a measurement domain 𝑉𝑜𝑏𝑠 external to the investigation cube allows to reconstruct (a suitable

approximation of) the unknown dielectric object. In our numerical simulations, the emitting and 

receiving antennas are uniformly distributed on a fixed sphere enclosing the investigation cube. For sake 

of simplicity, a single-view case is described in the following. The extension of the mathematical 

formulation to the multi-view case is however straightforward.  

The scattered electric field 𝐄𝑠𝑐𝑎𝑡𝑡(𝐫) is related to the dielectric properties of the investigated area

𝑉𝑖𝑛𝑣 by means of the following two integral equations, usually referred as data and state equations,

𝐄𝑠𝑐𝑎𝑡𝑡(𝐫) = 𝐆𝑑𝑎𝑡𝑎(𝑐𝐄𝑡𝑜𝑡)(𝐫),        𝐫 ∈ 𝑉𝑜𝑏𝑠

𝐄𝑖𝑛𝑐(𝐫) = 𝐄𝑡𝑜𝑡(𝐫) − 𝐆𝑠𝑡𝑎𝑡𝑒(𝑐𝐄𝑡𝑜𝑡)(𝐫),      𝐫 ∈ 𝑉𝑖𝑛𝑣
(1) 

where 𝑐(𝐫) = 𝜖𝑟(𝐫) − 1 is the target contrast function (being 𝜖𝑟 the space dependent relative complex

dielectric permittivity of the cube 𝑉𝑖𝑛𝑣), the linear convolution operators 𝐆𝑑𝑎𝑡𝑎 and 𝐆𝑠𝑡𝑎𝑡𝑒 are

𝐆𝑑𝑎𝑡𝑎𝐟(𝐫) = −𝑘0
2 ∫ 𝐟(𝐫) ∙ 𝐆0(𝐫, 𝐫′)𝑑𝐫′,

𝑉𝑖𝑛𝑣
 𝐫 ∈ 𝑉𝑜𝑏𝑠,

𝐆𝑠𝑡𝑎𝑡𝑒𝐟(𝐫) = −𝑘0
2 ∫ 𝐟(𝐫) ∙ 𝐆0(𝐫, 𝐫′)𝑑𝐫′

𝑉𝑖𝑛𝑣
,  𝐫 ∈ 𝑉𝑖𝑛𝑣,

being 𝑘0 = 𝜔√𝜖0𝜇0 the free-space wavenumber and 𝐆0(𝐫, 𝐫′) = −
1

4𝜋
(𝐈̅ +

∇∇

𝑘0
2)

𝑒−𝑗𝑘|𝐫−𝐫′|

|𝐫−𝐫′|
 is the free-

space dyadic Green’s function. The data and state equations can be merged in order to obtain the 

following single non-linear operator equation 

𝐄𝑠𝑐𝑎𝑡𝑡(𝐫) = 𝐆𝑑𝑎𝑡𝑎(𝐂((𝐈 − 𝐆𝑠𝑡𝑎𝑡𝑒𝐂)−1𝐄𝑖𝑛𝑐))(𝐫) , (2) 

where 𝐫 ∈ 𝑉𝑜𝑏𝑠 and 𝐂 is the operator such that 𝐂(𝐟)(𝐫) =  𝑐(𝐫)𝐟(𝐫), 𝐫 ∈ 𝑉𝑖𝑛𝑣. By defining the non-linear

operator 𝐅(𝑐) = 𝐆𝑑𝑎𝑡𝑎(𝐂((𝐈 − 𝐆𝑠𝑡𝑎𝑡𝑒𝐂)−1𝐄𝑖𝑛𝑐)) that maps the contrast function 𝑐 with the scattered

electric field 𝐄𝑠𝑐𝑎𝑡𝑡 , equation (2) can be written in compact form as follows

𝐅(𝑐)(𝐫) = 𝐄𝑠𝑐𝑎𝑡𝑡(𝐫),      𝐫 ∈ 𝑉𝑜𝑏𝑠 . (3) 

The non-linear equation (3) models the full inverse scattering problem: Given the scattered electric 

field 𝐄𝑠𝑐𝑎𝑡𝑡 (i.e., the data), measured in the measurement domain 𝑉𝑜𝑏𝑠, find the contrast function 𝑐 (i.e.,

the unknown) in the investigation domain 𝑉𝑖𝑛𝑣 such that  𝐅(𝑐) = 𝐄𝑠𝑐𝑎𝑡𝑡 .

3. The solution of the inverse problem in Banach spaces via quasi-Newton schemes

By a pure mathematical point of view, the nonlinear operator of (3) is a map 𝐅: 𝐶 → 𝐸 between a 

linear functional space 𝐶 of the contrast functions and the functional space 𝐸 of the electric fields. In 

the classical solving schemes, 𝐶 and 𝐸 are 𝐿∞(𝑉𝑖𝑛𝑣)  ⊂ 𝐿2(𝑉𝑖𝑛𝑣) and 𝐿2(𝑉𝑜𝑏𝑠) respectively, being 𝐿2

the Hilbert spaces of square-integrable functions. In our solving scheme, 𝐶 and 𝐸 are the more general 

Banach spaces 𝐿∞(𝑉𝑖𝑛𝑣)  ⊂ 𝐿𝑝(𝑉𝑖𝑛𝑣) and 𝐿𝑝(𝑉𝑜𝑏𝑠) of p-integrable functions, with  1 < 𝑝 < 2, so that

the more recent theory of regularization in Banach spaces can be applied [19]-[21]. Indeed, it has been 

shown that the resolution of functional equations in 𝐿𝑝 Banach spaces, with 1 ≤ 𝑝 < 2, reduces over-

smoothness effects of the classical 𝐿2 solutions, leading to a better localization of the discontinuities of

the scatterers.  

To solve (3), a Newton-like iterative method is applied to minimize the 𝐿𝑝(𝑉𝑜𝑏𝑠) residual functional
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Ω𝑝: 𝐿𝑝(𝑉𝑖𝑛𝑣) → ℝ defined as follows

Ω𝑝(𝑐) =
1

𝑝
‖𝐅(𝑐) − 𝐄𝑠𝑐𝑎𝑡𝑡‖

𝐿𝑝(𝑉𝑜𝑏𝑠)
𝑝

 . 

In particular, any linearized equation of the Newton scheme is solved by means of a gradient-like 

iterative regularization method for inverse problems in Banach spaces [19]. In our three-dimensional 

case, the Fréchet derivative 𝐅𝑐
′: 𝐿𝑝(𝑉𝑖𝑛𝑣) → 𝐿𝑝(𝑉𝑜𝑏𝑠) of the operator 𝐅 at point c is given by

𝐅𝑐
′𝛿(𝐫) = 𝐆𝑑𝑎𝑡𝑎

𝑐 (𝛿𝐄𝑡𝑜𝑡
𝑐 )(𝐫),  𝐫 ∈ 𝑉𝑜𝑏𝑠,    ∀𝛿 ∈ 𝐿𝑝(𝑉𝑖𝑛𝑣) , (4) 

where 𝐄𝑡𝑜𝑡
𝑐 (𝐫) = ((𝐈 − 𝐆𝑠𝑡𝑎𝑡𝑒𝐂)−1𝐄𝑖𝑛𝑐)(𝐫), 𝐫 ∈ 𝑉𝑖𝑛𝑣, and the operator 𝐆𝑑𝑎𝑡𝑎

𝑐  is given by 

𝐆𝑑𝑎𝑡𝑎
𝑐 𝐟(𝐫) = −𝑘0

2 ∫ 𝐟(𝐫) ∙ 𝐆𝑐(𝐫, 𝐫′)𝑑𝐫′
𝑉𝑖𝑛𝑣

, 𝐫 ∈ 𝑉𝑜𝑏𝑠, (5) 

being 𝐆𝑐 the dyadic Green’s function for an inhomogeneous background characterized by 𝑐 [22].

As it is well-known, together to convergence issues, the drawback of Newton methods in real 

applications is the generally expensive computation of the new Fréchet derivative at each iteration. On 

the other hand, it is expected that the “new” Fréchet derivative at iteration 𝑘 could be suitably 

approximated by means of the “previous” one at iteration 𝑘 − 1. Basically, this is the key point of several 

generalizations named as quasi-Newton methods. In this paper we deal with the frozen-Newton method 

[17] and the Broyden-Newton method [18], as summarized in the following steps. 

I) Let 𝑐0 ∈ 𝐿∞(𝑉𝑖𝑛𝑣) be an initial guess (the null function c0 is often used in the applications), and

comupute the Fréchet derivative of 𝐅 at point c0, denoted as 𝐅0
′ . Set  𝑛: = 0 (please notice that 𝑛

denotes the outer interation index).

II) Frozen update: if 𝑛 mod 𝑠 = 0 then 𝐅̃𝑛
′ = 𝐅𝑛

′ , that is, let 𝐅̃𝑛
′  be the (new) Fréchet derivative 𝐅𝑛

′  of 𝐅 

at point 𝑐𝑛; else set 𝐅̃𝑛
′ = 𝐅̃𝑛−1

′  , (i.e., use the same derivative of the previous step) 

Broyden update: if 𝑛 mod 𝑠 = 0 then 𝐅̃𝑛
′ = 𝐅𝑛

′ , else let 𝐅̃𝑛
′  be the approximation of the Fréchet 

derivative 𝐅𝑛
′  of 𝐅 at point 𝑐𝑛 defined by the following Broyden update

𝐅̃𝑛
′ = 𝐅̃𝑛−1

′ +  
(𝐅(c𝑛)−𝐅(𝑐𝑛−1))−𝐅̃𝑛−1

′ 𝛿𝑛−1

‖𝛿𝑛−1‖
𝐿2(𝑉𝑖𝑛𝑣)
2 𝛿𝑛−1

𝑇 .

III) Compute a regularized solution of the linear system in 𝐿𝑝(𝑉𝑖𝑛𝑣) with respect to the unknown

function 𝛿𝑛

𝐅̃𝑛
′ 𝛿𝑛 = 𝐄𝑠𝑐𝑎𝑡𝑡 − 𝐅(𝑐𝑛) (6) 

by means of the minimization of the functional 
1

𝑝
‖𝐅̃𝑛

′ 𝛿𝑛 − (𝐄𝑠𝑐𝑎𝑡𝑡 − 𝐅(𝑐𝑛))‖
𝐿𝑝(𝑉𝑜𝑏𝑠)

𝑝
in 𝐿𝑝(𝑉𝑖𝑛𝑣)

Banach space, for 1 < 𝑝 < 2. To this end, we consider an early stop of the following Landweber 

iterative method for linear equations in 𝐿𝑝(𝑉𝑖𝑛𝑣) [23].

Let 𝛿𝑛,0
∗ = 0 ∈ 𝐿𝑞(𝑉𝑖𝑛𝑣) be the inner initial guess. Then for 𝑘 = 0,1,2, … (please notice that 𝑘

denotes the inner interation index), compute the iterative steps 

𝛿𝑛,𝑘+1
∗ = 𝛿𝑛,𝑘

∗ − 𝜏𝑘𝐅̃𝑛
′∗𝐉𝑝 (𝐅̃𝑛

′ 𝛿𝑛,𝑘 − (𝐄𝑠𝑐𝑎𝑡𝑡 − 𝐅(𝑐𝑛))), (7) 

𝛿𝑛,𝑘+1 = 𝐉𝑞(𝛿𝑛,𝑘+1
∗ ), (8) 

where q is the Hölder conjugate of 𝑝, that is, 
1

𝑝
+

1

𝑞∗ = 1, until a stopping rule is satisfied (e.g., a 

maximum number of inner iterations 𝑘𝑚𝑎𝑥 is reached or the norm of the functional to be minimized

falls below a fixed threshold). Here 𝜏𝑘 > 0 is the suitable step size, 𝐉𝑝: 𝐿𝑝(𝑉𝑜𝑏𝑠) → 𝐿𝑞(𝑉𝑜𝑏𝑠) and

𝐉𝑞: 𝐿𝑞(𝑉𝑖𝑛𝑣) → 𝐿𝑝(𝑉𝑖𝑛𝑣) denote the normalized duality maps between Banach spaces defined as
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𝐉𝑠(𝑣) = 𝜕 (
1

𝑟
‖𝑣‖𝐿𝑠

2 ) = ‖𝑣‖𝐿𝑠
2−𝑠|𝑣|𝑠−1𝑒𝑗 arg(𝑣), if 𝑣 ≠ 0, and 𝐉𝑠(0) = 0, for any 𝑠 > 1 [20]. Set

𝛿𝑛: = 𝛿𝑛,𝑘𝑚𝑎𝑥
.

IV) Update the current quasi-Newton solution by setting 𝑐𝑛+1 = 𝑐𝑛 + 𝛿𝑛 and let  𝑛: = 𝑛 + 1. Stop if a

predefined stopping rule (e.g., the discrepancy principle Ω𝑝(𝑐𝑛) < 𝑝𝜖𝑝, being 𝜖 an estimate of the

𝐿𝑝(𝑉𝑜𝑏𝑠)-norm of the noise on 𝐄𝑠𝑐𝑎𝑡𝑡) is satisfied elsewhere go to step II.

A. The Frozen and the Broyden updates 

In the frozen method, the same Fréchet derivative computed at iteration 𝑘 is used (i.e, is “frozen”) for 

a fixed number 𝑠 of subsequent iterations  𝑘 + 1, … , 𝑘 + 𝑠 − 1 [17].  

In the Broyden method, a special low-cost (i.e., rank-1) update of the Fréchet derivative is computed 

at each iteration [18], as now sketched. Differing from the straightforward one dimensional case, the 

difference 𝐅(𝑐𝑛) − 𝐅(𝑐𝑛−1) ∈ 𝐿𝑝(𝑉𝑜𝑏𝑠) does not give us enough information to approximate the whole

linear operator  𝐅cn
′ . On the other hand, the difference 𝐅(𝑐𝑛) − 𝐅(𝑐𝑛−1) gives us information about the

directional derivative of 𝐅 on the direction 𝛿𝑛−1 = 𝑐𝑛 − 𝑐𝑛−1, since 𝐅cn
′ 𝛿𝑛−1 = 𝐅(𝑐𝑛) − 𝐅(𝑐𝑛−1)  +

𝑂(‖𝛿𝑛−1‖2) . On this ground, the Broyden update modifies the Fréchet derivative along the direction

𝛿𝑛−1 = 𝑐𝑛 − 𝑐𝑛−1 only, by means of the increment 𝐅(𝑐𝑛) − 𝐅(𝑐𝑛−1), leaving unchanged the operator

on the subspace orthogonal to 𝛿𝑛−1. With standard Hilbertian decomposition 𝑣 = 𝛼𝛿𝑛−1 + 𝑢, where

𝑢 ⊥ 𝑣,  𝛼 =
𝛿𝑛−1

𝑇

‖𝛿𝑛−1‖2 𝑣 and ‖𝑢‖ = 1, we have that 

𝐅cn
′ 𝑣 = 𝐅cn

′ (𝛼𝛿𝑛−1 + 𝑢) = 𝛼𝐅cn
′ 𝛿𝑛−1 + 𝐅cn

′ 𝑢 =  𝛼𝐅cn
′ 𝛿𝑛−1 − 𝛼𝐅cn−1

′ 𝛿𝑛−1 + 𝛼𝐅cn−1
′ 𝛿𝑛−1 + 𝐅cn

′ 𝑢 ≈

𝛼𝐅cn
′ 𝛿𝑛−1 − 𝛼𝐅cn−1

′ 𝛿𝑛−1 + 𝛼𝐅cn−1
′ 𝛿𝑛−1 + 𝐅cn−1

′ 𝑢 = 𝛼(𝐅(cn) − 𝐅(cn−1)) − 𝛼𝐅cn−1
′ 𝛿𝑛−1 +

𝐅cn−1
′ 𝑣 =  𝐅cn−1

′ 𝑣 + [
1

‖𝛿𝑛−1‖2 (𝐅(cn) − 𝐅(cn−1) − 𝐅cn−1
′ 𝛿𝑛−1)𝛿𝑛−1

𝑇 ] 𝑣,

that is, 

𝐅cn
′ ≈ 𝐅cn−1

′ +  
𝐅(cn)−𝐅(cn−1)−𝐅cn−1

′ 𝛿𝑛−1

‖𝛿𝑛−1‖2 𝛿𝑛−1
𝑇  .

4. A numerical validation

The data and state scattering equations (1) are discretized by using pulse basis functions and Dirac’s

delta weighting functions [24]. In particular, the investigation domain 𝑉𝑖𝑛𝑣 is discretized into 𝑁 cubic

voxels of centers 𝐫𝑛
𝑖𝑛𝑣, 𝑛 = 1, … , 𝑁, and the observation domain is composed by 𝑀 measurement points

located at positions 𝐫𝑚
𝑚𝑒𝑎𝑠, 𝑚 = 1, … , 𝑀. We focus on the investigation domain shown in Figure 1; it

contains a cube and a parallelepiped of equal relative dielectric permittivity and it is partitioned with 

𝑁 = 10648. The measurement points are 𝑀 = 50, uniformly located on a sphere of radius 2 𝑚 and 

centered in (0; 0; 0). Six views are used, with plane waves at 300 𝑀𝐻𝑧 as illuminating sources. It is 

worth noting that, in the numerical implementation of the approach, a BiCGStab-FFT algorithm [24] 

has been used to speed up the computation of the total internal field and of the inhomogeneous dyadic 

Green’s function [22]. To achieve a comparison, we use 𝑝 ∈ {1.2,1.3, … ,2.2} inside the previously 

introduced updating methods for Fréchet derivatives, with 𝑠 = 4, and the complete one. We set 

maximum numbers of outer and inner iterations equal to 20 and 10, respectively, without stopping 

thresholds.  

The following errors are used to quantify the reconstruction quality of the objects and background 

𝐸𝑜𝑏𝑗 =
1

𝑁𝑜𝑏𝑗
∑

|𝑐̂(𝐫𝑖
𝑖𝑛𝑣)−𝑐(𝐫𝑖

𝑖𝑛𝑣)|

|𝑐(𝐫𝑖
𝑖𝑛𝑣)+1|𝐫𝑖

𝑖𝑛𝑣∈𝑉𝑜𝑏𝑗
 𝐸𝑏 =

1

𝑁𝑏
∑

|𝑐̂(𝐫𝑖
𝑖𝑛𝑣)−𝑐(𝐫𝑖

𝑖𝑛𝑣)|

|𝑐(𝐫𝑖
𝑖𝑛𝑣)+1|𝐫𝑖

𝑖𝑛𝑣∈𝑉𝑏
. 

where 𝑉𝑜𝑏𝑗 is objects’ domain (𝑁𝑜𝑏𝑗 voxels), 𝑉𝑏 is background’s one (𝑁𝑏) and 𝑐̂(𝐫𝑖
𝑖𝑛𝑣) are contrast

function’s reconstructed values. Table 1 summarizes the results.  
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Figure 1. Actual distribution of the relative dielectric permittivity. Three-dimensional views (with 

slices along the planes 𝑥 = 0, 𝑦 = 0 and 𝑧 = 0) and two-dimensional cut on the x-y plane. 

𝑝 Frozen Broyden Complete 

𝐸𝑜𝑏𝑗 𝐸𝑏 Time [s] 𝐸𝑜𝑏𝑗 𝐸𝑏 Time [s] 𝐸𝑜𝑏𝑗 𝐸𝑏 Time [s] 

1.2 0.20 1.5 10-3 531 0.23 0.9 10-3 427 0.20 1.6 10-3 2816 

1.4 0.25 2.6 10-3 366 0.27 3 10-3 378 0.25 2.6 10-3 1820 

1.6 0.27 3.4 10-3 359 0.29 3.6 10-3 373 0.27 3.4 10-3 1794 

1.8 0.29 4.2 10-3 366 0.29 4.4 10-3 369 0.29 4.2 10-3 1800 

2.0 0.29 4.8 10-3 357 0.30 4.8 10-3 372 0.29 4.8 10-3 1790 

2.2 0.30 5.4 10-3 390 0.30 5 10-3 385 0.30 5.4 10-3 1821 

Table 1. Errors and computational times upon 𝑝. 

We see that as 𝑝 approaches to 2.0 or higher values, both 𝐸𝑜𝑏𝑗 and 𝐸𝑏 grow; this supports a choice of

1 < 𝑝 < 2 when we are interested in detection of relatively small discontinuities like those in our 

investigation domain. Figures 2-3 report the reconstructed dielectric scenes. Concerning the 

approximations of Fréchet derivatives, we note that both Broyden and frozen strategies drastically 

reduce the computational time by keeping errors very close to the exact derivative case. 

5. Conclusions

In this paper, an approach for solving microwave imaging of lossy dielectric targets, which was 

originally developed for treating two-dimensional configurations, has been extended to inspecting three-

dimensional targets. The approach is based on the vector integral equations of the inverse scattering 

problem (Green’s tensor formulation) and on the application of an inexact-Newton method developed 

in 𝐿𝑝 Banach spaces with approximation of the Fréchet derivatives. Some preliminary numerical results

have been reported. Further activity will be devoted to inspecting more complex targets and to define 

rules for a proper choice of the optimum 𝑝-parameter, which is of course application-dependent, even 

by using real experimental data. 

Figure 2. Three-dimensional views (with slices along the planes 𝑥 = 0, 𝑦 = 0 and 𝑧 = 0) of the 

reconstruction distributions of the relative dielectric permittivity (exact Fréchet derivative, 𝑝 = 2.0). 

5th International Workshop on New Computational Methods for Inverse Problems IOP Publishing
Journal of Physics: Conference Series 657 (2015) 012008 doi:10.1088/1742-6596/657/1/012008

5



Figure 3. Three-dimensional views (with slices along the planes 𝑥 = 0, 𝑦 = 0 and 𝑧 = 0) of the 

reconstruction distributions of the relative dielectric permittivity (exact Fréchet derivative, 𝑝 = 1.2). 
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