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Abstract. In this work we propose a new identification strategy based on the coupling between
a probabilistic data assimilation method and a deterministic inverse problem approach using
the modified Constitutive Relation Error energy functional. The idea is thus to offer efficient
identification despite of highly corrupted data for time-dependent systems. In order to perform
real-time identification, the modified Constitutive Relation Error is here associated to a model
reduction method based on Proper Generalized Decomposition. The proposed strategy is
applied to two thermal problems with identification of time-dependent boundary conditions,
or material parameters.

1. Introduction
The Dynamic Data-Driven Application Systems (DDDAS) concept has received an increasing
interest during the last decade, in particular in the Computational Mechanics community [6].
The main idea is to create a feedback loop between a real system and its numerical model, in
order to: (i) control the evolution of the system using model predictions; (ii) update model
parameters using data measured on the physical system. A potential application, which is the
final target of this work, is structural health monitoring with real-time identification and control
of damage evolution in composite materials [13].

In this work, we focus on the identification step and model updating procedure; this requires
solving an inverse problem which is usually ill-posed. In order to investigate inverse problems
many approaches are possible : (i) deterministic approaches based on the definition of a
cost function associated to a regularization method; (ii) stochastic approaches using Bayesian
inference. The approach we propose here is based on a coupling between stochastic and
deterministic approaches. More specifically, we introduce the modified Constitutive Relation
Error (mCRE) which is an energy based method [11] and the Kalman filtering which is a
bayesian data assimilation method [10]. On the one hand, Kalman filtering enables effective
data assimilation and prediction of a dynamic system evolution from incomplete information;
it can be extended to non-linear systems. On the other hand, mCRE is a robust and powerful
tool for complex model identification; leaning on energy functionals as well as duality and
convexity properties, it has the ability to identify model parameters from highly corrupted data
[2]. In order to reach the real-time feature of the inverse method, mCRE is here associated with
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reduced order modelling based on Proper Generalized Decomposition [5, 4]. The proposed data
assimilation strategy is applied to two thermal problems with real-time identification/updating
of evolving boundary conditions, or material parameters.

2. Problem setting
We consider a thermal evolution of a body Ω ⊂ Rd over the time interval It = [0, T ]. The
boundary of Ω, denoted ∂Ω, is split in ∂Ωu (where Dirichlet boundary conditions u = ud are
applied) and ∂Ωq (where Neumann boundary conditions q · n = qd are applied). We suppose
that ∂Ωu and ∂Ωq are non-overlapping boundaries. In a direct approach, the thermal problem
we consider can be written under the following weak form :

B(u, v) = L(v) ∀v ∈ V ⊗ T

with admissibility spaces V =
{
u ∈ H1(Ω) \u = ud ∀x ∈ ∂Ωu

}
and T ={

u ∈ L2(It) \u = u0 for t = 0
}

. The operators are defined by B(u, v) =
∫
It

∫
Ω(cu̇v+K∇u∇v)dxdt

and L(v) =
∫
It

∫
Ω fvdxdt+

∫
It

∫
∂Ωq

qdvdxdt with u the temperature field, c the thermal capacity,

K the thermal conductivity and f a source term.
In the context of inverse problems, we search to identify a set p ∈ Rnp of model parameters

related for instance to material behavior. The problem we search to solve is then to find p such
that :

G(s, v; p) = 0 ∀v ∈ V ⊗ T (1)

where s denotes observations data realized on the physical system and operator G is defined
from the direct problem and introducing a measurement error term. Classically the problem (1)
corresponds to a constrained minimization problem. However, according to DDDAS paradigm
where observations are not known for the whole time interval but sequentially assimilated, we
reformulate the problem under the form of a dynamical system. The dynamical system is given
under space and time discrete form in (2) where we use a mesh of n nodes for space discretization
and a time discretization composed to nt steps; moreover we consider m measurement nodes.{

u(k+1) =M(k)u(k) + e
(k)
M

s(k) = H(k)u(k) + e
(k)
S

(2)

u(k) ∈ Rn is the nodal temperature field at time t(k), e
(k)
M ∈ Rn is a modeling error term,

s(k) ∈ Rm is the nodal values of observed data, and e
(k)
S ∈ Rm is an observation error reflecting

sensor sensitivity. Operators M(k) : Rn → Rn and H(k) : Rn → Rm are respectively model (or
transition) and observation operators.

3. Proposed model updating strategy
3.1. Classical way based on Kalman filtering
The Kalman filtering is a well-known data assimilation method [10], applicable for the resolution
of inverse problems and widely used in mechanical identification problems (see for example [3]).
It can be seen as a Bayesian filter in the Gaussian particular case. The Bayesian filter principle
is to introduce the two following hypotheses in the Bayes theorem : (i) the state vector u is
a Markov process: π

(
u(k)|u(0:k−1)

)
= π

(
u(k)|u(k−1)

)
; (ii) observations s(k) are independent

of state history u(0:k−1): π
(
s(k)|u(0:k)

)
= π

(
s(k)|u(k)

)
. The Bayes theorem can then be

reformulated, for a time-dependent system, in the following form :

π
(
u(k)|s(0:k)

)
=
π
(
u(k)|s(0:k−1)

)
π
(
s(k)|u(k)

)
π
(
s(k)|s(0:k−1)

) (3)
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In order to build the Kalman filter, we consider a linear dynamical system and it is necessary
to add the three following hypotheses : (i) observation and model errors are statistically
independent of the state; (ii) observation and model errors are statistically independent of each
other; (iii) all probability density functions introduced in the Kalman filter are assumed to be
Gaussian pdf. Moreover, pdf related to measurement and model errors are Gaussian white noise.
Finally, introducing these hypotheses in the dynamical system (2) and using Bayes theorem (3)
we can show that the Kalman filtering can be decomposed in two steps :

(i) a prediction step, wherein an a priori estimation u(k+ 1
2

) of the state vector u(k+1) is realized

(ii) a correction or assimilation step, wherein the a priori estimation is corrected by observed

data s in order to obtain the a posteriori state vector u
(k+1)
a which is the Kalman filter

estimation of the real state.

To solve inverse problems using Kalman filtering, it is necessary to explicitly introduce the
parameters vector p, which contains parameters we search to identify, in the dynamical system.
We thus define an expanded state vector, noted ū, and the associated dynamical system (4).{

ū(k+1) = M̄ū(k) + ē
(k)
M

s(k) = H̄ū(k) + e
(k)
S

with ū(k) =

[
u(k)

p(k)

]
(4)

The idea is then to apply a non-linear Kalman filter to the dynamical system (4), we consider
here the Unscented Kalman Filter [8]. The main drawback of this approach, besides its low
robustness with highly corrupted data, is the computational cost which is in O((n + np)

3).
The idea is then to use a similar approach as in [1] in order to circumvent these two drawbacks.
More specifically, we introduce the modified Constitutive Relation Error in the dynamical system
definition.

3.2. The modified Constitutive Relation Error
The modified Constitutive Relation Error (mCRE) is a deterministic method used to solve
identification problems based on energy functional minimization [11, 7, 2]. In the context of
thermal transient problems, the mCRE functionnal is defined as follows :

E2
m(u,q; p, s) =

1

2

∫
It

∫
Ω

(q−K∇u)K−1 (q−K∇u) dxdt+
1

2

r

1− r

∫
It

‖Πu− s‖2dt

where u ∈ U is the temperature field, q ∈ S the thermal flux and K the thermal conductivity
operator. r ∈ [0, 1[ is a scalar penalty coefficient used to weight more or less the measurement
error term, classically it is used r = 0.5 even though an optimal value can be obtained
related to the measurement noise (Morozov principle). We define the two admissibility
spaces U(It) =

{
u ∈ H1(Ω)⊗ L2(It) \u = ud ∀(x, t) ∈ ∂Ωu × It, u = u0∀(x, t) ∈ Ω× {It(0)}

}
and S(It) =

{
q ∈ L2(Ω)⊗ L2(It) \q = qd ∀(x, t) ∈ ∂Ωq × It, cu̇+∇ · q = f ∀(x, t) ∈ Ω× It

}
where It(0) denotes the first value of time interval It.

The classical way to solve inverse problems using mCRE is then to define p ∈ P, where P is
the parameters admissibility space, as the solution of (5).

p = argmin
ξ∈P

min
(u,q)∈U×S

E2
m(u,q; ξ, s) (5)

In practice problem (5) is solved using an alternate minimization associated to a fixed point
algorithm :

M1 minimization over U × S : (uad,qad) = argmin
(u,q)∈U×S

E2
m(u,q; p, s)
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M2 minimization over P : p = argmin
ξ∈P

E2
m(uad,qad; ξ, s)

Numerically the most expensive step is the first minimization since it is necessary to solve a
coupled forward-backward problem in time. Therefore, if we use a monolithic scheme like linear
interpolation in time, it is necessary to solve a 2× n× nt linear system.

3.3. Coupling between the Kalman filter and the mCRE
The approach we propose here is to introduce the modified Constitutive Relation Error, and
precisely the associated admissible fields computation, in the dynamical system (2). We can
then write a new dynamical system as :{

p(k+1) = p(k) + e
(k)
P

s(k) = Hm
(
p(k), s(k−1:k)

)
+ e

(k)
S

(6)

where the first equation translates the fact that without a priori knowledge about parameters
time dependence we add a stationarity hypothesis and we perturb it by a Gaussian white noise.
The new observation operator is then defined as follows :

Hm
(
p(k), s(k−1:k)

)
:= H ◦mCRE1

(
p(k), s(k−1:k)

)
with s(k−1:k) used to denote (s(k−1), s(k)). The application mCRE1(p(k), s(k−1:k)) returns the field

u
(k)
ad resulting from minimization M1. A small difference comes from the fact that in a classical

way minimization M1 is over U(It) × S(It) however here we define admissible fields for each

subinterval I
(k)
t = [t(k−1), t(k)] so that we realize minimization according to U(I

(k)
t )×S(I

(k)
t ). In

order to solve the identification problem we apply the Unscented Kalman Filter to dynamical
system (6), we denote this approach Modified Kalman Filter (MKF). Advantages to reformulate
the dynamical system under form (6) are of three kinds :

(i) The fact to introduce the modified Constitutive Relation Error in the Kalman filter increases
its robustness compared to the classical formulation;

(ii) With this new formulation, the Kalman filter computation cost is considerably reduced as
we pass from O((n+np)

3) to O(n3
p). However we introduce a new computation cost source

with the resolution of the first mCRE minimization;

(iii) The state system computation being based on mCRE admissible fields computation, it is
possible to introduce reduced order modelling based on Proper Generalized Decomposition.

3.4. Reduced order modelling
In order to reduce the computation cost and speed-up identification process, we introduce
reduced order modelling based on Proper Generalized Decomposition (PGD) [5]. The PGD
basic idea is to compute in an offline step the solution under a separated variable representation
and evaluate this solution in an online step. Another advantage to use PGD comes from the fact
that is possible to include several parameters as extra-coordinates. The identification strategy
we propose being an incremental method, the system state over each time increment depends

on parameters p(k), observations data (s(k−1), s(k)) and initial condition u
(k)
0 = u(k−1). The

main difficulty is associated to the initial condition which is non-homogeneous. To circumvent
this problem we choose to project it on a reduced basis from a first PGD decomposition, we

then write u
(k)
0 =

∑ninit
i=1 γiψi(x) and we introduce only the γi coefficients as extra-coordinates.

Consequently, we construct a PGD approximation on the following form :

u '
M∑
i=1

ninit∏
j=1

Γ
(j)
i (γi) ·

m∏
l=1

θ
(l)
i (s

(k−1)
l )

m∏
q=1

β
(q)
i (s

(k)
l ) · φi(p) · λi(t) · wi(x)
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4. Numerical results
The strategy we propose here is applied on two parabolic problems (transient thermal problems)
and results are compared to those obtained using the classical approach based on Unscented
Kalman Filter (UKF). In order to simulate observations data the strategy used is the following :

(i) Solve the direct problem with true parameters values using the same space mesh than the
one used for inverse problem but considering fine time discretization;

(ii) Extract temperature nodal values according to sensor placement and acquisition time
(coarser than for direct resolution);

(iii) Add a Gaussian white noise : s
(k)
i = u

(k)
i (1 +N (0,Σ)) ∀i = 1, ...,m ; ∀k

The first example we consider is the identification of time-dependent Neumann boundary
condition. The problem setting is given in Figure 1(a) and we consider highly corrupted data
with Σ = 0.2, that is to say 20% measurement noise. The identification results are presented in
Figures (1(b),1(c)).

u = ud

ρc, κ

qd
(t

)
=

?

sensor location

(a) Problem setting
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(b) UKF identification
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(c) MKF identification

Figure 1. Thermal-flow identification using UKF and MKF approaches with 20% measurement
noise

In order to study tuning parameters influence on results obtained by the Modified Kalman
Filter algorithm we realize a parametric study. We show in Figure 2(a) the influence of variance
associated to parameters error CP and observation error variance CS in term of global error

εMKF =
‖ptrue−E[pMKF ]‖L2(It)

‖ptrue‖L2(It)
. And in Figure 2(b) we show the influence of mCRE penalty

coefficient r and measure noise level Σ.
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(b) Penalization and measure noise influence

Figure 2. Modified Kalman filter parametric study
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The second problem treated with the MKF approach is the identification of time-independent
material parameters in a multi-layers structure. The problem setting is given in Figure 3(a) and
we consider a measurement noise of 10%, Σ = 0.1. The results are shown in Figures (3(b),3(c))
only for κ1 identification but the identification of other parameters performs the same way.

u = ud

κ1 ? κ2 ? κ3 ? κ4 ?

qd
=

co
n
st

a
n
t

sensor location

(a) Problem setting
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(b) κ1 UKF identification
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(c) κ1 MKF identification

Figure 3. Thermal conductivity identification using UKF and MKF approaches with 10%
measurement noise

To conclude, using the MKF approach we observe : (i) a significant computation time gain; (ii)
a better response of the identification process to abrupt changes of parameters to be identified;
(iii) global better results on parameters identification.
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