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Abstract. The planar and axially symmetric problems of cavitational flow around the body are 
considered by the Riaboushinsky scheme. The running-on flow is considered  to be established 
for vortex-free ideal and incompressible fluid. In order to find the flow around the body the 
boundary elements numerical method is used which incorporates the quadrature formulas 
without saturation. To find the free boundary the gradient descent method based on the 
Riabushischinsky method is proposed. The resistance force acting on the cavitator is expressed 
in terms of the Riabushischinsky function, enabling us to calculate the force with rather high 
precision for small cavitation numbers. The dependence of the resistance coefficient for 
cavitators of different shape is studied: for wedge and cone, the circular arc and the spherical 
segment. 

1.  Introduction 
The cavitation problems and the related numerical methods can be called classic. A considerable 
number of works is devoted to them, and their reviews may be found in monographs [1,2]. With the 
new technology development the more effective and precise methods for the cavitational flow 
problems are needed. In the present paper the planar and axially symmetric problems of the 
cavitational flow around the body are considered according to the Riabushischinsky scheme. The flow 
is considered to be established for vortex-free, ideal and incompressible fluid. Symmetric cavitators 
are considered and the flow around them is also supposed to be symmetric. The boundary is 
considered to consist of a cavitator of a given form, its mirror image and the free boundary, on which 
the fluid velocity is constant. 

For the flow around problem the boundary elements numerical method is applied to the integral 
equation of force on the flow boundary. The numerical scheme of the boundary elements method is 
applied to the integral equation of the velocity problem. 

The distinguishing features of the solution: 
• when solving the integral equation the quadrature formulas without saturation for the integral 

with logarithmic singularity are used [3]; 
• The Riabushischinsky variation principle is used to find the free surface and the gradient 

method is used to find the function extremum; 
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• The formula, that expresses the force on the cavitator through the Riabushischinsky function 
alows to calculate the force even at small cavitation number. 

2.  The cavitational flow on the wedge 
To test the numerical scheme the exact solution of the cavitational flow around problem for the wedge 
according to the Riabushischinsky scheme [4] can be used. The solution is built with the help of the 
conformal mapping on the motion hodograph plane in the same way as the classical Riabushischinsky 
solution for the plate in [5] (pp. 304-306). A quarter of the flow plane CBAM in the complex plane z 
is mapped to the motion hodograph plane t as shown in figure 1. On the free surface MA the fluid 
velocity is constant 0 1v v σ∞= ⋅ +  where v∞ is the velocity in a point at infinity C, σ is the 
cavitation number, figure 1. The complex potential of the flow W is expressed through the variables z 
and t as follows: 
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Figure 1. The conformal mapping scheme.  Figure 2. The resistance 

coefficient for the wedge (1) 
and for the cone (2). 

The wedge segment AB (symmetric to the initial wedge segment A’B’ ) corresponds to the 
segment on the imaginary axis t=iτ, 0<τ<1. The segment AB is defined as the dependence of the 
complex vector z(τ)=i2-αLτ on the parameter τ, the unit vector i2-α is directed along the AB, and Lτ is the 
distance from the edge of the wedge to the observation point. The dependences of Lτ and the velocity v 
on the parameter τ are: 
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Here L stays for the segment AB length. The force acting on the wedge may be defined as: 
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For the wedge resistance coefficient CD the exact expansion can be obtained 
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By (1) the resistance coefficient can be calculated with the precision up to 5 significant digits for 
cavitation numbers less than 0.3. For the plate α=1, σ=0 we obtain the known formula (see [5], p. 303): 

2 / ( 4) 0.87980DC π π= + ≈  
For the wedge with α=1/2 the exact value of the resistance coefficient can be found 

2 / [12 2 2 log(3 2 2)] 0.45041DC π π= + + − ≈  
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As the cavitation number is zero the dependences of α on the resistance coefficient of the wedge and 
cone are presented in figure 2.  The wedge resistance coefficient achieves its maximum 0.89478 as 
α=1.1038, which corresponds to the wedge apex angle 180°·α=198.7°. 

3.  The flow around problem calculation scheme 
Following [6] the numerical solution scheme of the flow around problem is described in the case of a 
two-dimensional planar or axially symmetric flow of the ideal fluid. The equation of the flow around 
boundary is presented in the parametric form x(s), y(s), where s is the coordinate along the solid 
boundary, calculated from the critical point. According to the boundary elements method for the 
velocity distribution v(s) on the flow around boundary the integral equation Av(s)=2(1+n)πv∞(y(s))1+n 
is solved, where n=0 for the planar problem, n=1 for the axially symmetric one, A is the integral 

operator 
0

( ) ( , ) ( )
l

Av s G s s v s ds′ ′ ′= −∫ , l – is the full length of the boundary in the planar case and the 

length of the generating line in the axially symmetric one. Green function for the planar problem is 

expressed through the distance 2 2( ( ) ( )) ( ( ) ( ))r x s x s y s y s′ ′= − + −  between the points of the 
boundary (x(s), y(s)) and (x(s’), y(s’)). For the planar problem G(s,s’)=ln(r), and for the axially 
symmetric problem it is the flow function of the vortex ring and is expressed through elliptical 
integrals. To perform the numerical calculations the sampling of the boundary with a finite number of 
points, such that the value ζ= ζi=i/N, i=1..N corresponds to the point Mi is introduced. The parameter ζ 
and the coordinate s are coupled by the following relation ds=J dζ, where J characterizes the point 
density on the boundary. With the help of quadrature formulas [3, 6] the integral equations are reduced 
to a system of linear equations. 

4.  The iteration process to determine the form of the cavity 
According to the Riabushischinsky principle, the solution should maximize the function 
U=(p∞−p0)V−T, where V is the surface or the volume, limited by the surface ∂V; T is the kinetic energy 
of the fluid when the solid in it is moving translationally with the velocity v∞, p∞ is the pressure at 
infinity.  The free boundary is found using the gradient descent method that maximizes the function U. 
The variations of the points coordinates of the free boundary and the cavitator are set as follows δx=εx, 
δy=k(v0

2-v2)+εx·dy/dx, δlx=εlx. Then the variation of the function U in the planar problem is strictly 

positive 2 2 2
0( )

2 V
U k v v dxρδ

∂
= −∫ . The parameters k,ε can be found  using that the velocity at the 

end-point of the cavitator is v0 and the scheme stability. The formulas have the second order of 
accuracy by the subinterval length. The obtained forms of the cavities for spherical cavitators are 
shown in figure 3. 

 
Figure 3. The forms of the cavities for spherical cavitators for different values of the angle parameter 
α. (α – is the apex angle of the descending flow divided by 180°) 

9th International Symposium on Cavitation (CAV2015) IOP Publishing
Journal of Physics: Conference Series 656 (2015) 012167 doi:10.1088/1742-6596/656/1/012167

3



 
 
 
 
 
 

5.  The force formula 
A solid flowed around by fluid with velocity v∞ is considered by the Riabushischinsky scheme. The 

resistance force 0( ) xF p p n dS
Σ

= − −∫  can be expressed through the Riabushischinsky function. For 

the planar problem it is 

 0/ , (1/ ) ( )( ( ) )x x xF U l F F l p p ydx x l dy
Σ

= + ∆ ∆ = − − +∫  (2) 

For the wedge ΔF=0, and for the parabolic cavitator x=−lx+ky2 we have that 
0 2 2 2

00
( / ) ( )

y

xF l v v ky dyρ∆ = − −∫ . The term ΔF is strictly negative. It constantly diminishes the 

resistance force for convex cavitators k>0 and increases it for concave ones (the cavitators in the shape 
of umbrellas). It is equally simple to calculate ΔF for the cavitators in the shape of circular arcs and 
for other shapes. In the axially symmetric case 

 2 2
03 / (2 ) , (1/ ) ( ) ( ( ) )z z zF U l F F l v v r rdz z l drπ

Σ
= + ∆ ∆ = − − +∫  (3) 

The direct calculation of the resistance coefficients by integrating the pressure on the cavitator 
boundary leads to substantial measurement errors for small cavitation number, as the relative number 
of computational points on the cavitator for the planar problem decreases proportionally to the square 
of the cavitation number. Formulas (2) and (3) are free of this limitation, because when they are used, 
the integral on the whole boundary of the whole computational domain is calculated.  The extreme 
value of the Riabushischinsky function U*, obtained in the solution of the cavitation problem allows 
finding the resistance coefficients with high precision. 
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