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Abstract. An Euler-Lagrange model is developed to simulate bubbly flow around an obstacle
with the aim to resolve large and meso-scales of cavitation phenomena. The volume averaged
Navier-Stokes equations are discretized using finite elements on an unstructured grid with a
variational multiscale method. The trajectory of each bubble is tracked using Newton’s second
law. Furthermore, bubble interaction is modeled with a soft sphere contact model to obtain a
four-way coupled approach. The new features presented in this work, besides using a variational
multiscale method in an Euler-Lagrange framework, is an improved computation of the void
fraction. A second order polynomial is used as filtering function and the volume integral is
transformed by applying the divergence theorem twice, leading to line integrals which can
be integrated analytically. Therefore, accuracy of void fraction computation is increased and
discontinuities are avoided as is the case when the kernel touches a Gauss point across time steps.
This integration technique is not limited to the chosen spatial discretization. The numerical
test case considers flow in a channel with a cylindrical obstacle. Bubbles are released close to
the inflow boundary and void fractions up to 30 % occur at the stagnation point of the obstacle.

1. Introduction
Cavitation is a very important phenomenon that can be highly detrimental, e.g. when occurring
at ship propellers. Vapor bubbles, formed within the fluid phase due to a sudden drop of local
pressure, can cause structural damage when collapsing or lead to power loss. Millions of small
nuclei, which can be found in any liquid, strongly influence cavitation inception. Simplified
approaches to simulate cavitation include homogeneous flow models with a proper equation of
state or two-fluid Eulerian approaches considering the volume fractions of each phase. However,
due to the recent developments in computational resources and methods, it becomes feasible to
simulate each nucleus as a particle which is tracked throughout a simulation in the scope of an
Euler–Lagrange model.

2. Numerical Model
The liquid phase is described by the volume-averaged incompressible Navier-Stokes equations.
The continuity equation is reformulated as in [1] leading to a non-divergence free fluid field:

∇ · u = − 1

εl

(
∂εl
∂t

+ u · ∇εl
)

(1)
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where εl denotes the liquid-phase volume fraction and u is the volume averaged fluid-phase
velocity. Following [7], the volume averaging procedure reads

εlρl
∂u

∂t
+ εlρlu · ∇u = −∇p+∇ · τ + εlρlg + s (2)

using the pressure p, the temporal and spatial constant liquid-phase density ρl and the viscous

stress tensor τ = µ
(

(∇u) + (∇u)T
)
− 2

3µ (∇ · u) I with the dynamic viscosity µ and the identity

tensor I. The gravity vector and the coupling term with the bubbles are denoted by g and s,
respectively.

The fluid is described in an Eulerian frame whereas the bubbles are handled as discrete points
which are tracked individually in a Lagrangian frame using Newton’s second law:

mb
d

dt
v̇ = FG + FD + FL + FVM︸ ︷︷ ︸

=−s′

+FP + FV ISC

︸ ︷︷ ︸
=−s

+FC (3)

in which mb and v are the bubble mass and velocity, respectively. Gravity force, drag force, lift
force, virtual mass force, and pressure force are chosen as in [2] using a constant lift and virtual
mass coefficient cl = cvm = 0.5. The drag coefficient cd is adopted from [3]. Viscous forces

FV ISC = Vb∇ · τ (4)

of a bubble with volume Vb require the computation of second derivatives of the fluid velocity
which are zero for linear finite elements as they are used in this work. Therefore, a reconstruction
of the first derivatives using an L2-projection is applied. The collision force is computed using
a soft sphere contact model with the normal gap gn,ij , unit normal vector nij from bubble i
to bubble j, and the stiffness parameter kc according to FC = kcgn,ijnij if gn,ij ≤ 0. Bubble-
wall collisions are modeled assuming infinite mass of the wall element. The coupling force s
does not include gravity and collision forces when choosing the momentum equation as in (2).
Furthermore, the pressure force and viscous force can be dropped from the coupling term s when
combined with the respective terms in the momentum equation [4]. The coupling term is then
denoted as s′ and the momentum equation reads

εlρl
∂u

∂t
+ εlρlu · ∇u = −εl∇p+ εl∇ · τ + εlρlg + s′ . (5)

The final formulation of the volume-averaged NS equations used in this work are obtained by
dividing (5) by εl, and the continuity equation as given in (1).

The Euler–Lagrange model is based on a variational multiscale method for the underlying
fluid according to [5] and thus it is possible to distribute coupling forces from the bubbles
using the shape functions evaluated at the position of the bubble within the element. Hence,
a conservative coupling can be achieved because of the partition of unity property of finite
element shape functions. Fluid velocity and acceleration are necessary to evaluate the bubble
forces. Interpolation from fluid quantities such as velocity and acceleration is also performed
using the shape functions evaluated at the bubble position. The computation of the volume
fraction occupied by the bubbles cannot be handled by the finite element discretization directly.
In order to avoid pulsating velocity fluctuations in the fluid field when assigning the full bubble
volume to a single element as described in [6], a remedy are smooth kernel functions with zero
tangents at their bounds of influence, see also [6]. This reduces oscillations due to Gaussian

9th International Symposium on Cavitation (CAV2015) IOP Publishing
Journal of Physics: Conference Series 656 (2015) 012125 doi:10.1088/1742-6596/656/1/012125

2



integration. In this work, a distribution using a quadratic filtering function

Ψd =

3
4

(
−(xd−xdj )

2

σ3 + 1
σ

)
, if − σ ≤

(
xd − xdj

)
≤ +σ

0 , else
(6)

for direction d around the bubble position xdj together with an improved integration of the
resulting volume integral is proposed. The radius of influence σ = 1.2 rb,j is chosen to smear the
volume fraction across the underlying fluid elements. The volume integral

nbub∑
i=1

Vb,i

∫
Ωj

Ψx
i Ψy

iΨ
z
i dxdydz (7)

over the domain Ωj of fluid element j gives its partial volume that is occupied by all nbub
bubbles. The bubble influence volume is assumed to be cubic, as proposed in [8], which allows
for a special treatment of the volume integral that is usually solved using Gaussian integration.
If the fluid elements are distorted and not enough Gauss points are chosen, loss of accuracy in
the calculation of the void fraction can occur. Inspired by [9], the volume integral is transformed
to line integrals via applying divergence theorem twice instead of using Gaussian integration.
The evaluation of the resulting line integrals is as expensive as using four Gauss points in each
direction but accuracy is highly increased. This integration scheme allows for an infinite bubble
movement to result in an infinite change in void volume which is superior to Gaussian integration.

The fluid flow is solved on an unstructured grid using stabilized linear finite elements with
implicit time integration with generalized-α time integration (αm = 5

6 , αf = γ = 2
3) as applied

in [5]. Larger time step can be chosen than for the explicit Velocity-Verlet algorithm for the
bubbles. Hence, subcycling is applied and one fluid step is followed by 100 bubble steps.

3. Results
The following test case with flow around a cylindrical obstacle is chosen because it can be seen
as a simplified geometry of a hydrofoil. The box like geometry of 5.0 m × 2.0 m × 0.4 m
(length × height × depth) contains a cylindrical hole in width direction with a diameter of 0.5
m located in the height mid plane in a distance of 1.5 m from the inflow. Fluid inflow from the
left is ramped from zero to 1.0 m/s within 0.05 s. This velocity is also prescribed on the top and
bottom surface whereas a slip condition is prescribed on the sides in order to model an infinitely
extended cylinder. On the outflow on the right a do nothing boundary condition is imposed.
Bubble inflow of 2121 bubbles is started at time t = 0.01 s and repeated every 0.01 s within the
first layer of fluid elements 0.01 m from the inflow. The inflow velocity is chosen equal to the
underlying fluid velocity and the inflow position is determined by using a rectangular grid with
101 times 21 grid points in height and width direction, respectively. A random offset of up to
20 % of the bubble radius is added to each initial position to break symmetry. The bubble radius
rb = 0.004 m and its density ρb = 0.001 kg/m3. The stiffness parameter kc is set to 0.021 N/m
leading to a maximum overlap of less than 0.02 % of the bubble radius. The fluid with dynamic
viscosity µ = 8.9 · 10−4 Pa s and density ρl = 1.0 kg/m3 is discretized with 53448 tri-linearly
interpolated unstructured hexahedral elements without refinement in the near wall region and a
time step size of ∆t = 0.01 s. Gravity acceleration is neglected. In Figure 1 (left), the nuclei are
depicted and colored with their velocity magnitude at t = 5.0 s. The boundary surfaces of the
fluid are also included in the figure but the front and rear surface are removed. Vortex shedding
is about to start in the wake of the cylindrical obstacle. Due to bubble Reynolds number
smaller unity, the bubbles follow the fluid flow quite accurately and can be seen as marker in
the fluid flow. The cross section of the channel is reduced at the obstacle position leading to an
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Figure 1. Bubble velocity (left) and close-up of fluid fraction in mid-plane (right) at t = 5.0 s.

increased fluid velocity which directly influences the bubble velocity. At the stagnation point
of the obstacle bubbles are slowed down and extensive inter-particle contact as well as contact
with the cylindrical surface occurs. In this region, fluid fraction goes down to about 70 % as
depicted in Figure 1 (right).

4. Summary and Outlook
An Euler–Lagrange model based on a variational multiscale method for the fluid is presented in
which bubble movement is driven by Newton’s second law. The new feature of this contribution
is the usage of the finite element model for the volume averaged Navier-Stokes equations in
such a framework and an improved computation of the void fraction which is not limited to the
discretization type. The volume integral is transformed into line integrals by applying divergence
theorem twice. This obviates Gaussian integration and allows for analytical integration, which is
more accurate. Further developments will focus on the investigation of damage due to cavitation.
Therefore, the bubble radius, which is assumed constant so far, will be modeled based on the
Rayleigh-Plesset equation. Thus, position and time of collapses can be detected dependent on
the ambient conditions.
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