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Abstract. Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and 
vibration. Damage due to cavitation can be found at the tip of the runner blades on the low 
pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern 
that is related to the number of guide vanes. That might suggest that a relationship exists 
between the flow through the guide vanes and the tip vortex cavitating core that induces this 
kind of erosion. 
On the other hand, it is known that air injection has a beneficial effect on reducing the damage 
by cavitation. In this paper, a methodology to identify the interaction between guide vanes and 
tip vortex cavitation is presented and the effect of air injection in reducing this particular kind 
of erosion was studied over a range of operating conditions on a Kaplan scale model. 
It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, 
mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the 
flow through the guide vanes and the tip vortex and decreases the level of vibration of the 
structural components.  

1.  Introduction 
Axial hydro-turbines present a clearance between the runner blades and the discharge ring. This 
feature in combination with the high pressure gradient among both sides of the blade, induce a 
secondary flow known as tip vortex, which has been studied by several authors [1].   
The high intensity of the vortex and the low pressure at the outlet of the runner may generate 
cavitation of the vortex core [2]. As a consequence, erosion issues at the runner blades and discharge 
ring can occur at the prototype machine. Moreover, the tip vortex can interact with the wakes 
generated by the flow leaving the guide vanes giving rise to a phenomenon of interaction that is 
similar to well-known rotor stator interaction (RSI). The existence of this interaction is suggested in 
the prototype machine by the presence of as many erosion patches at the discharge ring (on a 
horizontal plane) as guide vanes [3]. Some mitigation methods, such as anti-cavitation lips, have been 
tried but their effectiveness has not always been ensured. The use of air injection is an interesting 
option for cavitation problems, as it has been used in many industrial applications. Arndt et al. [4] 
examined the effect of air injection on NACA profiles for the mitigation of cloud cavitation, and found 
that it was an effective method of minimizing the potential of erosion. 
In this work, experimental investigation of pressurized air injection in a physical model of a Kaplan 
turbine is studied. The main objectives are the mitigation of tip vortex cavitation and the suppression 
of the RSI. In the first part, the experimental setup and the test procedure are presented. Then, the 
trajectory of the air in the flow is characterized with the aid of high speed visualization and the main 
results are summarized in terms of efficiency and vibrations. Finally, the RSI pattern is analyzed. 
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2.  Methods and materials 
Experiments were carried out at the test rig facility in the Hydromechanics Laboratory of La Plata, 
Argentina. The circuit is equipped with a feeding pump with variable rotational speed, allowing for the 
regulation of the specific energy (E) and the flow rate (Q). Experimental investigations on the test rig 
were based on IEC 60193-standard [5]. The Kaplan model is located between the high and low 
pressure tanks. The diameter of the runner (D) was 0.34 m and the rotational speed was 1000 rpm, 
reaching a Reynolds number of 6.05E6 based on the blade tip velocity. The discharge ring was 
manufactured with a transparent material for the sake of visualization.  
The model was instrumented with two accelerometers located at the discharge ring, one hydrophone at 
the draft tube inlet, and a phase sensor at the runner shaft (Figure 1). The sampling frequency of the 
signal was 50 kHz. An air compressor was connected, through a pressurized manifold, to 20 evenly 
spaced 3-mm-diameter holes located on a horizontal plane above the runner centerline. A ball air flow-
meter was placed between the compressor and the manifold. 
In Figure 1b the operating points tested over the hill chart are shown. Air was injected at each 
operating point for 8 different air flow rates (Qa=0.2, 0.3, 0.4, 0.8, 1.3, 1.7 and 2.1‰) in combination 
with 11 σ numbers ranging from cavitation-free conditions to a fully developed cavitating regime. 
Finally, a high-speed camera (PHOTRON SA4) was used to analyze the air trajectory.  

 
 
 
 
 
 
 
 
 
 

Figure 1. a) Instrumentation and air injection location on the model. b) Measured points in the hill 
chart. AC1, AC2 and HID denote the position of the accelerometers and the hydrophone, respectively. 

E* and Q* are the nominal value for specific energy and flow rate.   

3.  Results 
3.1.  Flow visualization 
Figure 2 presents high-speed visualization snapshots at different positions of the runner blade with air 
injection for a free-cavitation regime. Air entrance occurs when the pressure at the manifold is greater 
than the fluctuating fluid pressure (Figure 2a). Fluid pressure is seen to rise due to the high gradient 
between both sides of the blade as the leading edge interferes with the air jet (snapshot 2). Air travels 
along the edge of the blade (snapshot 3) until getting immersed into the vortex core (snapshot 4).  

 
 
 
 

 
 
 
 
 
 

Figure 2. a) Fluid pressure fluctuations at the location of one injector and in the manifold for one 
blade passage, as a function of the pressure coefficient (CP) and time (t*fn), where fn is the runner 

rotational frequency. b) Snapshots of air injection for the blade position (1, 2, 3 and 4) indicated in 2.a) 
for a cavitation-free regime.   
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3.2.  Hydrophone measurements 
For a cavitation-free regime, the ensemble average of the hydrophone signal remains essentially flat 
(Figure 3a), which implies a random behavior. For σ = 1.40, there is an incipient tip leakage 
cavitation. The oscillatory pattern is driven by a frequency of 25 fn (Figure 2b) and remains the same 
as the amplitude increases with decreasing values of σ (Figure 2c). Simultaneously, an increase of the 
random component is observed, which is in agreement with the higher development of tip cavitation. 
When air is injected, the frequency of 25 fn vanishes, giving rise to components of 20 and 5 fn.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Hydrophone signal for the operating condition P2: ensemble average (black line) and 
instant values (gray dots) for different σ values with and without air. 

 
3.3.  Global results 
The intensity of vibration rises as σ decreases, reaching a local maximum for σ ~ 1.2. A further 
decrease in σ results in levels of vibration going down until σ ~ 0.9 upon which a new rise is observed, 
in coincidence with full cavitation conditions (Figure 4a). The level of vibration is also seen to 
decrease as the rate of air injection increases for a constant σ regardless of the operating conditions 
(Figure 4b). Beyond approximately Qa= 0.5‰, air injection has no further influence on the level of 
vibration and the efficiency drop becomes greater than 1%. The evolution of the amplitude of the 
hydrophone signal corresponding to a frequency of 25 fn rises as the guide vane opening (α) increases 
(Figure 4c). The trend is positive except for the maximum guide vane opening conditions (P1).  
 
 
 
 
 
 
 
 
 
 

 
Figure 4. a) Influence of the development of cavitation on the vibration level as a function of the 

standard deviation of the acceleration signal (SD) and σ; b) Influence of air injection rates on the 
vibration level for constant σ values; c) Amplitude of the hydrophone signal corresponding to a 
frequency of 25 fn as a function of the guide vane opening. Pi (i = 1,2,…,6) denote the operating 

conditions shown in Figure. 1. 
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n/m 1 2 3 4 5

1 -19 -14 -9 -4 1

2 -43 -38 -33 -28

3 -67 -62 -57 -52 -47

k1=mZ b -nZ 0

n/m 1 2 3 4 5

1 -15 -10 -5 0 5

2 -35 -30 -25 -20 -15

3 -55 -50 -45 -40 -35

k1=mZb-nZ i

4.  Discussion 
4.1.  RSI analysis 
As σ decreases, cavitation develops mainly as tip leakage cavitation. The influence of the non-uniform 
flow leaving the guide vanes can be identified by the analysis of the modulation process generated by 
the stationary flow field of the 24 guide vanes (Z0), and the rotating flow field due to the 5 runner 
blades (Zb), as proposed by Ruchonnet et al. [6]. Table 1a shows the RSI patterns for several orders of 
harmonics for the first diametrical mode number k1. The highest amplitude expected is for the first 
order of harmonics of flow through the guide vanes (n = 1) and the fifth order of harmonics of flow 
through the runner (m = 5), since k1 is the minimum. The characteristic frequency of 25 fn, given by 
the expression f/fn = mZb, has to be present if the interaction exists. When air is injected, there is a 
novel interaction between the 20 injectors (Zi) and the blade passage, which is summarized in table 1b. 
In this case, k1 is minimum for m= 4 and n=1, and the characteristic frequency is 20 fn, where f/fn = 
mZi.  
 
Table 1.  First diametrical mode number k1 according to harmonic order m for the runner blades 
(Zb=5) and m. a) For the guide vanes (Z0=24); b) For the injectors (Zi=20). 
 
a)         b)  

 
 
 
 

5.  Conclusions 
The tip vortex cavitation that develops at lower cavitation numbers was singled out as one of the main 
causes of the increase of vibration levels.  
The analysis of the signal of the hydrophone reveals the presence of RSI-related phenomena which 
becomes apparent when tip vortex cavitation develops.  
Air injection was found to fluctuate in correspondence with periodic oscillations of fluid pressure due 
to the blade passage. Regardless, it can be an effective tool both in eradicating the influence of the 
flow driven by the guide vanes and in reducing the level of vibration. This may have a beneficial 
effect on the mitigation of the erosion due to its related tip vortex cavitation.  
Vibration levels were reduced 50 % for an air flow rate of Qa = 0.5 ‰ at the expense of an efficiency 
drop of less than 1 %.  
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