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Abstract. The problem of coalescence of two pulsating spherical bubbles is studied using 

Lagrangian formalism in assumptions that the acoustic field is weak, the frequency of the 

external impact is appreciably less than natural oscillation frequency and influence of viscosity 

on phase of radii pulsation is small. The obtained necessary condition for coalescence of the 

bubbles is determined by the dimensionless parameter, whose boundary value is nonlinearly 

depending on the quotient of the bubbles' radii.  

1.  Introduction 

The studies on the interaction of two oscillating spheres with periodically varying radii were first 

reported by V.F.K. Bjerknes [1]. 

When the distance x  (figure 1, 2 1x x x  , 1 1 2 2,u x u x   ) between the centers of the spheres 

is large, the force averaged over the period (secondary Bjerknes force) is inversely proportional to the 

squared distance and equals 

 
2 2

1 2 1 22

4
,BF a a a a

x


     (1) 

where 1a , 2a  are the radii of bubbles, and we consider that 1 2a a ,   is the fluid density and the dot 

signifies the time derivation. 

In this paper we use the model of two interacting gas bubbles in the presence of a weak acoustic 

field 

 cos( ), .p p p t p p      (2) 

Assuming that the frequency of the external impact   is considerably smaller than the natural 

oscillation frequency 0  and satisfies the condition 
2

0  , where 
24 / a   , we obtain that 

[2] 0 0 0(1 cos ), / 3i ia a t P p        , where   is the polytropic exponent and   is the 

fluid’s viscosity . In this case, as the bubbles are pulsating in phase, the secondary Bjerknes force 

between them is attractive. 

When the distance x is small, the attraction force is [3] 
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The classical formula for the viscous interaction force for the bubbles with fixed radii which are nearly 

touching is [4] 
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The force of the viscous interaction averaged over the period is equal to zero. So the sum  

 0.BF F   (5) 

It means that bubbles should always coalesce. But in some cases the bubbles coalesce, in others do 

not. The purpose of this work was finding the necessary conditions for the coalescence of the bubbles. 

2.  Theoretical part 

The initial point of our research is the kinetic energy of the fluid T . We consider the surrounding 

medium to be incompressible and the bubble shape to be spherical. The exact solution of the problem 

of interaction of two solid spheres moving along the line of their centres was first obtained by Hicks 

[5]. The general expression for T is [3,6] 
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The coefficients 
i

nA  and 
i

nB  can be calculated from recurrence relations with the initial conditions  
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The Lagrange function for this system equals 
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Using the thin-layer approximation, the more accurate formula for the force of the viscous 

interaction of the bubbles is [3]: 
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The system of Lagrange equations is of 4th order. Assuming that 
2 2

0  , 
2

0   the 

system is reduced to 2nd order. In transition from the coordinates 1x  and 2x  to 1 2h x a a    and 

1 2y x x   it can be noticed that y  is a cyclic coordinate. In this case, using the Routh 

transformation, the problem is reduced to a single differential equation 
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where  5 5 2 5 4 5 3 2

11 01 12 01 22 01(1 ) (1 ) (1 )a aR a             ,  0 cos t   , 

1/h a  , 11 12 22, ,      are functions of variables   and 1 2/a a .   

Assuming that  1  , the differential equation takes the form  
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Here and hereafter, the dots signify the derivatives with respect to the dimensionless time tt   .  

If the bubbles do not coalesce, they will pulsate near a certain distance 0 . In this case, the average 

force of the interaction is equal to zero. To find this force we have looked for the steady-state solution 

of (11) in the form  0 't    . We take into account the linear and quadratic terms with respect 

to the oscillation amplitude  . Transferring the linear terms to the left-hand side and the quadratic 

terms to the right-hand side, we obtain, in linear approximation, the amplitude and the phase for  . 

The dimensionless average total force f   was obtained by averaging the quadratic terms in the right 

side of (11).  

3.  Results and discussion 

We have obtained the dependence of the dimensionless average total force f  on the relative 

equilibrium distance 0  for different quotients of bubbles’ radii. These results are presented in figures 

2-4. 

 

 

 
Figure 1. Problem statement  Figure 2. The dependences of the dimensionless 

average total force 
2

0/f   on the relative distance 

0  for 
2 1/ 1a a  . 
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Figure 3. The dependences of the dimensionless 

average total force 
2

0/f   on the relative 

distance 
0  for 

2 1/ 1.5a a   

 Figure 4. The dependences of the dimensionless 

average total force 
2

0/f   on the relative 

distance 
0  for 

2 1/ 2a a   

 

The range of numbers M , in which the averaged force of the interaction is negative ( 11   is a 

positive function  and may be considered as effective mass), determines the necessary condition for 

еру coalescence of the bubbles. In case of equal radii (figure 2), the coalescence takes place at 

0.03M  . When the quotient of the radii is 
2 1/ 1.5a a   (figure 3), the area of the parameter M , for 

which the attraction is observed, expands to 0.11M  . When 
2 1/ 2a a   (figure 4), the attraction 

occurs at 0.25M  . 

The obtained results are consistent with the data of recent experiments with two bubbles 

( 1 2 25a a m   ) in an ultrasonic standing wave at 22.4 kHz [7] witch coalescence. For this values 

the parameter M  is about 0.015  and it is less than 0.03  and therefore it satisfies the necessary 

condition for coalescence. To be noted, in our model we have neglected the buoyancy force, as it can 

be assumed to be compensated by the first Bjerknes force. This fact was also investigated in [8]. 

4.  Conclusion 

In this work we studied the forces of bubbles’ interaction that depend on their size, the parameters of 

the fluid and the periodic external pressure field. The necessary condition for coalescence of the 

bubbles is determined by the dimensionless parameter M. With the growth of the quotient of the 

bubbles' radii the boundary value of this parameter is rising nonlinearly. 

The work was supported by the Russian Science Foundation, project No 14-19-01633. 
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