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Abstract. Pressure wave propagation in a liquid containing several bubbles is numerically
investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical
bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound
pressures of the reflected waves from the rigid walls are calculated by using the method of
images. The result shows that the phase velocity of the pressure wave propagating in the liquid
containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound
in a homogeneous bubbly liquid.

1. Introduction
The presence of gas bubbles dispersed in a liquid affects profoundly the acoustic behaviour of the
liquid. For example, the low-frequency speed of sound in a bubbly liquid is lower than that in a
pure liquid. In the previous studies [1, 2, 3], the physical mechanism of the reduction of the low-
frequency speed of sound has been explained in a liquid containing bubbles where the assumption
of homogeneous medium holds. In general, the speed of sound in a continuum medium is
defined as a =

√
1/κρ, where κ is the compressibility and ρ is the density of the medium.

The compressibility of a homogeneous bubbly liquid is primarily determined by the amount of
bubbles and the density by the amount of liquid. Bubbles greatly increase the compressibility
of a homogeneous bubbly liquid, but hardly affect the density. High compressibility and density
yield a low speed of sound.

The purpose of the present paper is to answer the question: will the low-frequency speed of
sound be reduced in a liquid containing several bubbles where the assumption of homogeneous
medium no longer holds? In the present study, we simulate pressure wave propagation in a liquid
containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical
bubbles, in which the bubble-bubble interactions are taken into account. We assume that bubble
size is much smaller than the wavelength of the pressure wave; hence, we restrict ourselves to
low-frequency wave propagation in a bubbly liquid [3]. We compare the low-frequency speed of
sound in a homogeneous bubbly liquid with the phase velocity of the pressure wave propagating
in the duct.

2. Problem Statement
Let us simulate pressure wave propagation in a liquid containing 10 spherical bubbles in a
rectangular duct [Fig. 1(a)]. The bubbles have the same initial radius R0, and are placed at
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Figure 1. (a) 10 spherical bubbles are placed at equal intervals in a rectangular duct. (b)
Schematic of distribution of imaginary bubbles in the y − z plane.

equal intervals on the center axis of the duct. The bubbles are excited by a linear plane wave
started to propagate from x = 0. The input pressure wave having pℓ0 + Pin(t, x) propagates at
the speed of sound in a liquid-phase, where t is the time and pℓ0 is the pressure of the liquid
in the initial undisturbed state. The sound pressure of the input pressure wave Pin(t, x) is
PA[1−cosω(t−x/aℓ)], where PA is the amplitude of the input pressure wave (PA/pℓ0 ≪ 1), ω is
the angular frequency of the input pressure wave, and aℓ is the speed of sound in a liquid-phase.
The delay time x/aℓ denotes the time it takes for the pressure wave to propagate the distance
x at the speed aℓ. The angular frequency ω is much smaller than the natural angular frequency
of the single bubble.

In the present study, the following assumptions are made: (i) the liquid flow is a potential
flow. (ii) The translation and deformation of the bubbles are ignored. (iii) The bubble-bubble
interactions are taken into account. (iv) The bubbles are filled with a non-condensable gas,
which follows the isothermal process, without phase changes. (v) The bubble radius R(t) is
large enough so that the surface tension is negligible. (vi) All attenuations including the acoustic
radiation are ignored.

We shall use the equation of motion for N spherical bubbles in a sound field [4]. Under the
present assumptions, we linearize the equation of motion,

R̈′
I(t) +

N∑
J=1, J ̸=I

R0
R̈′

J(ζJI)

rIJ
+ ω2

BR
′
I(t) = −Pin(t, xI)

ρℓR0
, (1)

where R′(t) = R(t) − R0 is the small fluctuation of the bubble radius (|R′|/R0 ≪ 1), the
subscripts I and J are the bubble indices (I, J = 1, 2, · · · , N, I ̸= J), xI is the x coordinate of
the center of bubble I, rIJ is the distance between the centers of bubbles I and J , ρℓ is the
density of a liquid-phase, and ζJI = t − [rIJ − RJ(ζJI)]/aℓ. The delay time [rIJ − RJ(ζJI)]/aℓ
denotes the time it takes for the radiative wave generated by the radial oscillation of bubble J to
propagate the distance rIJ at the speed aℓ. The natural angular frequency of the single bubble
ωB is

√
3pℓ0/(ρℓR

2
0) (ω/ωB ≪ 1). The second term in the left-hand side of Eq. (1) represents

the bubble-bubble interactions. In the limit as rIJ → ∞, or N → 1 (when the bubble-bubble
interactions are ignored), Eq. (1) is reduced to the equation of linear oscillation for a single
spherical bubble [4].

The radiative waves generated by the radial oscillations of the bubbles in the rectangular
duct are reflected from the rigid walls. We calculate the sound pressures of the reflected waves
by using the method of images. We place imaginary bubbles in a two-dimensional array in the
y − z plane as shown in Fig. 1(b).
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Now, we calculate the pressure field at the point Q(x, y, z). The total sound pressure PQ is
given by the summation of Pin(t, x) and the sound pressures generated by the radial oscillations
of the real and imaginary bubbles. It should be emphasized here that during a given period of
time T , the radiative waves generated by the radial oscillations of the bubbles propagate only
for a distance aℓT ; therefore, we calculate only the sound pressures generated by the radial
oscillations of the real and imaginary bubbles in the distance aℓT from the point Q. The sound
pressure generated by the radial oscillation of a real, or imaginary bubble k is written by

PQk(t) = −ρℓ
∂ϕk

∂t
= ρℓR

2
0

R̈′
k(t− rk/aℓ)

rk
, (2)

where ϕk is the velocity potential for the flow field generated by the radial oscillation of bubble
k given by ref. [5] and rk is the distance between the center of bubble k and the point Q. Hence,
the total sound pressure PQ can be calculated by using the following equation:

PQ(t) = Pin(t, x) +
∑
k

ρℓR
2
0

R̈′
k(t− rk/aℓ)

rk
. (3)

The total sound pressure in a water at 20◦C is calculated by numerically solving Eqs. (1) and (3)
under the conditions with pℓ0, aℓ, and ρℓ of 101.3 kPa, 1483 m/s, and 998.2 kg/m3, respectively.
The bubble 1 is placed at x = LB. The distance between adjacent bubbles LB is 50.0 mm. The
nondimensional amplitude PA/pℓ0 and the nondimensional angular frequency ω/ωB of the input
pressure wave are 1.82× 10−3. The ordinary differential equations (1) are solved numerically by
using the 4th order Runge-Kutta method.

3. Numerical Results and Discussion
We compare the low-frequency speed of sound in a homogeneous bubbly liquid with the phase
velocity of the pressure wave propagating in the duct. The phase velocity is defined as follows.
Let PI(t) and PII(t) be the total sound pressures at points I and II (points x = 2LB and 4LB on
the rigid wall), respectively. From the simulation results, we find t′ that satisfies the equation
PI(t) = PII(t

′) as a function of t, and define the phase velocity as ap(t) = 2LB/(t
′ − t) in a

time t = 10LB/aℓ when the input pressure wave arrived at the center of the bubble 10. The
low-frequency speed of sound in a homogeneous bubbly liquid depends on the void fraction. In
the present study, we define the void fraction β as the ratio of the volume of the bubble and the
domain around the middle point between adjacent bubbles:

β =
4πR3

0/3

LB × 2LW × 2LW
. (4)

We conducted the simulations with various void fractions by changing either LW (R0 = 1.00
mm) or R0 (LW = 10.0 mm). Figure 2(a) shows the time evolution of the total sound pressures
at the points I and II in the case of R0 = 1.00 mm and LW = 10.0 mm. The present result
is normalized by the natural period of the single bubble: 2π/ωB. It should be emphasized
here that we investigate the pressure wave development in the period of the order of 2π/ωB,
which corresponds to the only 0.1% of the period of the input pressure wave. In the case of
β = 2.09× 10−4, the phase velocity of the pressure wave propagating in the duct is 639 m/s.

The low-frequency speed of sound in a homogeneous bubbly liquid is often modeled by an
equation attributed to Wood’s equation [2, 3, 6],

amlf =

[
(1− β)2

a2ℓ
+

β2

a2g
+ β(1− β)

ρ2ga
2
g + ρ2ℓa

2
ℓ

ρℓρga
2
ℓa

2
g

]−1/2

, (5)
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Equation (6)
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Figure 2. (a) Time evolution of the total sound pressures at the points I and II. (b) Relation
between Eq. (6) and the phase velocities of the pressure wave.

where ag is the speed of sound in a gas-phase and ρg is the density of a gas-phase. When
the relation: a2g = pℓ0/ρg is used and the conditions: β2 ≪ (ρga

2
g)/(ρℓa

2
ℓ) ≪ 1 are imposed in

Eq. (5), we derive the following equation,

amlf = aℓ

(
1 +

ρℓa
2
ℓ

pℓ0
β

)−1/2

. (6)

Figure 2(b) shows both the numerically obtained phase velocities and the low-frequency speed
of sound by Eq. (6). The phase velocities of the pressure wave propagating in the duct agree well
with Eq. (6). From these results, we conclude that in a liquid containing 10 spherical bubbles in
a rectangular duct, the phase velocity of the pressure wave propagating in the media is reduced
from the speed of sound in a liquid-phase with the increase in the void fraction defined by
Eq. (4).

4. Conclusions
Pressure wave propagation in the liquid containing 10 spherical bubbles in the rectangular duct
was simulated with the equation of motion for N spherical bubbles. The sound pressures of the
reflected waves from the rigid walls were calculated by using the method of images. The phase
velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the
duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.
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