
 

 

 

 

 

 

Numerical simulation of bubble collapse and the transfer of 

vapor and noncondensable gas through the bubble interface 

using the ghost fluid method  

Y Jinbo1*, K Kobayashi1, M Watanabe1 and H Takahira2 
1 Division of Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628, Japan 
2 Department of Mechanical Engineering, Osaka Prefecture University, Sakai 599-8531, Japan 
* E-mail: jinbo_y@eng.hokudai.ac.jp 
 

Abstract. The ghost fluid method is improved to include heat and mass transfer across the gas–

liquid interface during the bubble collapse in a compressible liquid. This transfer is due to both 

nonequilibrium phase transition at the interface and diffusion of the noncondensable gas across 

the interface. In the present method, the ghost fluids are defined with the intention of conserving 

the total mass, momentum, and energy, as well as the mass of each component while considering 

the heat and mass fluxes across the interface. The gas phase inside the bubble is a mixture of 

vapor and noncondensable gas, where binary diffusion between the mixture components is taken 

into account. The gas diffusion in the surrounding liquid is also considered. This method is 

applied to a simulation of a single spherical bubble collapse with heat and mass transfer across 

the interface in a compressible liquid. When noncondensable gas is present, it accumulates near 

the interface due to vapor condensation, thereby preventing further condensation. This results in 

a weaker bubble collapse than the case without noncondensable gas. 

1.  Introduction 

Significant research efforts have recently been devoted to applying the extremely high pressure and 

temperature fields derived from bubble collapse to new environments for medical application and for 

the synthesis of new materials [1, 2]. Hatanaka [2] measured the amount of OH radicals dissolving into 

liquid from a single bubble oscillating in ultrasonic fields and showed that the amount increases under 

the “dancing bubble condition,” where a single bubble is not stably located while oscillating, but rather 

moves around accompanied with splitting and coalescing. To clarify the mechanism behind the increase, 

it is necessary to construct a computational method that can simultaneously treat both nonspherical 

bubble collapse accompanied by complicated interfacial structure and heat and mass transfer through 

the interface. Although many numerical simulations have been conducted until now [3-5], these methods 

are considered to be insufficient for computing violent bubble collapse yielding chemical reactions 

whilst considering both the complicated structure and the heat and mass transfer. 

In this study, a numerical method for compressible two-phase flows is presented that can treat 

nonspherical bubble collapse with complicated deformation of the interface accompanied by heat and 

mass transfer through the interface (i.e., diffusion of noncondensable gas and nonequiliblium phase 

transition of vapor). In our previous studies [6, 7], nonequilibrium phase transition following 

nonspherical bubble collapse was considered by developing the ghost fluid method (GFM) [8]. In this 

study, this method is extended to treating heat and mass transfer due to diffusion of noncondensable gas 

through an interface, while simultaneously treating the nonequilibrium phase transition. 

A similar method has been recently constructed to solve the pressure and velocity differences at the 

interphase due to phase transition by Houim & Kuo [9]; their method employs the idea of the modified 
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GFM [10] which applies the solution of two-phase Riemann problem to the definition of the ghost fluid. 

Their method is considered to solve certain situations more appropriately than our method just as the 

modified GFM is known to perform better than the original GFM [10]. Here, however, we adopt the 

original GFM because of the simplicity of extending it to the multidimensional problem. 

2.  Numerical methods 

Although the following presents the construction of the spherical 1-D computational method, it can be 

straightforwardly extended to the multidimensional simulation and treatment of the complicated 

interfacial structure, because the present method is constructed by extending the level set method (LSM) 

[11] and the GFM [8] which are respectively used for implicitly capturing the location of the interface 

and implicitly satisfying the boundary conditions at the interface. 

2.1.  Governing equations 

In the bubble interior, the Euler equations for the two species are solved with consideration for heat 

conduction and mutual diffusion of vapor and noncondensable gas. This is the same as in the 

computation of Matsumoto & Takemura [3] except that we neglect the fluid viscosity. For the bubble 

exterior, the Euler equations are solved; the distribution of the noncondensable gas dissolved in the 

liquid phase is obtained by solving the advection–diffusion equation with the velocity field of the liquid 

phase in a manner similar to the computation of Akhatov et al. [4]. The following stiffened gas equations 

of state [12] are employed for the noncondensable gas (air), the liquid (water), and its vapor: 

𝑝 = (𝛾 − 1)𝜌(𝐸 − 𝜖) − 𝛾Π, 𝐸 =
𝐶𝑝

𝛾
𝑇 +

Π

𝜌
+ 𝜖 (1) 

where 𝑝 is the pressure, 𝜌 is the density, 𝐸 is  the internal energy per unit mass, 𝑇 is the temperature and 

𝛾, Π, 𝜖, 𝐶𝑝 are the parameters for the characteristic of materials. The following values are used. 
 

water: 𝛾𝑙 = 2.35, Π𝑙 = 109 Pa, 𝜖𝑙 = −1167 × 103 J/kg, 𝐶𝑝𝑙 = 5.947 × 103 J/(kgK) 

vapor: 𝛾𝑣 = 1.43, Π𝑣 = 0 Pa, 𝜖𝑣 = 2030 × 103 J/kg, 𝐶𝑝𝑣 = 1.487 × 103 J/(kgK)       

air: 𝛾𝑔 = 1.4, Π𝑔 = 0 Pa, 𝜖𝑔 = 0 J/kg, 𝐶𝑝𝑔 = 1.007 × 103 J/(kgK)                      
 

where subscript 𝑙, 𝑣 and 𝑔 represents the liquid, vapor and noncondensable gas, respectively. 

Heat conduction obeys Fourier’s law. The heat conductivity of each gas component linearly varies 

with temperature [13, 14]. The diffusion velocity is determined using Fick’s law. The coefficient of 

binary diffusion of vapor and noncondensable gas is calculated using Fuller’s equation [15]. The 

diffusion coefficient of noncondensable gas in liquid is 𝐷𝑙 = 1.76 × 10−9 m2/s [4]. The third-order 

TVD Runge–Kutta scheme and the third-order ENO-LLF scheme are used for time and space 

discretization of the Euler equations, respectively [16]. 

2.2.  Numerical methods for gas–liquid interface 

The boundary conditions imposed on the gas–liquid interface are almost the same as the ones used in 

[9]; in the present simulation, heat and mass fluxes due to the nonequilibrium phase transition, 𝑚̇𝒗 

(positive for evaporation), and due to the diffusion of noncondensable gas through the interface, 𝑚̇𝒈 

(negative for dissolution), are considered while the fluid viscosity is neglected. 

2.2.1.  Level set method [11]. The level set function 𝜑 is used for capturing the interface location. When 

mass transfer through the interface is neglected, the level set function is usually advanced by the 

advection equation with the fluid velocity fields. When a phase transition is considered, the distribution 

of velocities normal to the interface is discontinuous at the interface due to the phase transition. 

Therefore, the level set function is advanced using the modified velocity fields 𝒖𝑅 as follows: 

𝒖𝑅 = 𝒖 −
𝑚̇𝑔 + 𝑚̇𝒗

𝜌𝑚
𝑖  

𝒏  (𝜑 > 0: gas phase), 𝒖𝑅 = 𝒖 −
𝑚̇𝑔 + 𝑚̇𝒗

𝜌𝑙
𝑖 

𝒏  (𝜑 < 0: liquid phase) (2) 
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where 𝒖 is the velocity vector, 𝒏(= ∇𝜑/|∇𝜑|) is the unit normal, subscripts 𝑚 represents the mixture, 

and superscript 𝑖 means the value at the interface. 

2.2.2.  Ghost fluid method [8]. The GFM is used to prevent the fluid variables with discontinuous 

distributions across the interface from being numerically diffused. In the GFM, instead of explicitly 

applying the boundary conditions to the interface, the boundary conditions at the interface are implicitly 

satisfied by defining an artificial fluid (ghost fluid). The following definitions of the ghost fluid are 

obtained by extending the ghost fluid that is defined for modeling phase transitions to the treatment of 

the noncondensable gas diffusion through the interface. 
 

𝒖𝑚
ghost

⋅ 𝒏 = 𝒖𝑙
real ⋅ 𝒏 −

𝑚̇𝑔 + 𝑚̇𝑣

𝜌𝑙
𝑖

+
𝑚̇𝑔 + 𝑚̇𝑣

𝜌𝑚
𝑖

, 𝑝𝑚
ghost

= 𝑝𝑚
ext, 𝑠𝑚

ghost
= 𝑠𝑚

ext, 

𝒖𝑙
ghost

⋅ 𝒏 = 𝒖𝑙
ext ⋅ 𝒏, 𝑝𝑙

ghost
= 𝑝𝑚

real +
(𝑚̇𝑔 + 𝑚̇𝑣)

2

𝜌𝑚
𝑖

−
(𝑚̇𝑔 + 𝑚̇𝑣)

2

𝜌𝑙
𝑖

+ 𝜎𝜅, 𝑠𝑙
ghost

= 𝑠𝑙
ext, 

𝒒𝑚
ghost

⋅ 𝒏 = 𝒒𝑙
real ⋅ 𝒏 − 𝑚̇𝑣𝐿𝑣 − 𝑚̇𝑔𝐿𝑔 +

1

2

(𝑚̇𝑔 + 𝑚̇𝑣)
3

𝜌𝑙
𝑖2 −

1

2

(𝑚̇𝑔 + 𝑚̇𝑣)
3

𝜌𝑚
𝑖 2 , 

𝒒𝑙
ghost

⋅ 𝒏 = 𝒒𝑚
real ⋅ 𝒏 + 𝑚̇𝑣𝐿𝑣 + 𝑚̇𝑔𝐿𝑔 +

1

2

(𝑚̇𝑔 + 𝑚̇𝑣)
3

𝜌𝑚
𝑖 2 −

1

2

(𝑚̇𝑔 + 𝑚̇𝑣)
3

𝜌𝑙
𝑖2 , 

(𝜌𝑔𝒗𝑔)𝑔
ghost

⋅ 𝒏 =
𝜌𝑔

𝜌𝑚
𝑚̇𝒗 −

𝜌𝑣

𝜌𝑚
𝑚̇𝑔, (𝜌𝑔𝒗𝑔)

𝑙

ghost
⋅ 𝒏 = 𝑚̇𝑔 − 𝑐𝑖(𝑚̇𝑔 + 𝑚̇𝑣) 

 

(3) 

where 𝑠 is the entropy, 𝜎 is the surface tension, 𝜅(= ∇ ⋅ 𝒏) is the curvature of the interface, 𝒒 is the heat 

flux vector, 𝐿𝑣(= ℎ𝑣
𝑖 − ℎ𝑙

𝑖: ℎ  is the specific enthalpy) is the latent heat accompanying the phase 

transition of the vapor, 𝐿𝑔(= ℎ𝑔
𝑖 − ℎ𝑙

𝑖) is the latent heat related to the dissolution and volatilization of 

the noncondensable gas, and 𝑐 is the concentration of the noncondensable gas dissolved in the liquid. 

The velocity of the mixture, 𝒖𝑚, is the mass averaged velocity of each component and is related to the 

velocities of the individual components by 𝒖𝑔 = 𝒖𝑚 + 𝒗𝑔 and 𝒖𝑣 = 𝒖𝑚 + 𝒗𝑣, where 𝒗 is the diffusion 

velocity. Superscripts “ghost,” “real,” and “ext” represent the ghost fluid value, the actual value at the 

point where the ghost fluid is defined, and the value extrapolated to the point from the other fluid across 

the interface, respectively. The ghost temperatures used for the calculation of 𝒒 are defined considering 

the temperature jump, Δ𝑇, due to the phase transition as follows:   

𝑇𝑚
ghost

= 𝑇𝑙
real − Δ𝑇, 𝑇𝑙

ghost
= 𝑇𝑚

real + Δ𝑇 (4) 

Although the mass flux can be determined from any phase transition model, the Hertz–Knudsen–

Langmuir model [4] (with the accommodation coefficient of 0.055) is employed in this work. The 

temperature jump is determined by an equation derived from molecular gas dynamics [17]. The mass 

flux due to the noncondensable gas diffusion through the interface is determined as follows: 

𝑚̇𝑔 = 𝐷𝑙(𝑐𝑙
𝑖 − 𝑐𝑠𝑎𝑡), 𝑐𝑠𝑎𝑡 = 𝐻𝑛𝑝𝑔

𝑖  (5) 

where 𝐻𝑛 is Henry’s law constant with the value of 1.481 ×  10−10 Pa−1 [4]. 

3.  Numerical results 

The result obtained from the present method was compared with Fig. 7 in Matsumoto & Takemura [3]. 

It was confirmed that the present result was in good agreement with Matsumoto & Takemura. 

Examples of the spherical symmetric computation are shown where a single vapor bubble containing 

a small amount of noncondensable gas collapses. Initial conditions are as follows: water pressure 

surrounding the bubble, 𝑝0, is 0.1013 MPa; water density, 𝜌𝑙0, is 989.0 kg/m3; initial temperature in 

the computational domain, 𝑇0 , is 296 K; and initial bubble radius, 𝑅0 , is 1 mm. Initially, the mass 

fraction of the mixture inside the bubble is spatially uniform and is equal to 𝜙0(= 𝜌𝑔/(𝜌𝑔 + 𝜌𝑣)). The 
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mass fraction is set to 0 (only vapor), 0.02, 0.05, and 0.1 in the following computations. Initial vapor 

pressure, 𝑝𝑣0, is the saturation pressure at temperature 𝑇0. In the present simulation, adaptive zonal grids 

with 10 layers (where the finest grid spacing is 7.8125×10-5𝑅0) is applied according to the bubble radius. 

The length of the computational domain is 200𝑅0 in the radial direction. Symmetric boundary conditions 

are used at the origin of the spherical coordinates, and nonreflective boundary conditions are applied at 

the edge of the computational region. 

Figure 1 presents the time histories of (a) bubble radii and (b) total mass of vapor inside the bubble, 

𝑀𝑣
̅̅ ̅̅ . Enlarged view of a specific time period is shown in the inset at the right-hand side of each figure. 

The four lines represent the data obtained for different initial mass fraction. After the bubbles oscillate 

for several periods, the energy of oscillation is dissipated and the bubbles stabilize at a certain radius 

when the bubbles contain a small amount of noncondensable gas. On the other hand, when the bubble 

contains only the vapor (𝜙0 = 0), the entire vapor is transformed into liquid due to condensation. 

4.  Conclusion 

We demonstrated improved LSM and GFM to treat the gas–liquid interface followed by the diffusion 

of the noncondensable gas through the interface and the nonequilibrium phase transition. The spherical 

bubble collapse accompanied by the heat and mass fluxes through the bubble interface was reasonably 

simulated. 
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Figure 1. Time histories of (a) bubble radii and (b) total mass of vapor. 
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