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Abstract. The paper presents the results obtained with a spool piece (SP) made of a Venturi 

flow meter (VMF) and an Electrical Capacitance Probe (ECP) in stratified two-phase flow. The 

objective is to determine the relationship between the test measurements and the physical 

characteristics of the flow such as superficial velocities, density and void fraction. The outputs 

of the ECP are electrical signals proportional to the void fraction between the electrodes; the 

parameters measured by the VFM are the total and the irreversible pressure losses of the two-

phase mixture. The fluids are air and demineralized water at ambient conditions. The flow rates 

are in the range of 0,065-0,099 kg/s for air and 0- 0,039 kg/s (0-140 l/h) for water. The flow 

patterns recognized during the experiments are stratified, dispersed and annular flow. The 

presence of the VFM plays an important role on the alteration of the flow pattern due to wall 

flow detachment phenomena. The signals of differential pressure of the VFM in horizontal 

configuration are strongly dependent on the superficial velocities and on the flow pattern 

because of a lower symmetry of the flow with respect to the vertical configuration. 

1. Introduction 

In the framework of integral test facilities for the thermal-hydraulic simulation of nuclear reactors, 

with particular emphasis to small modular reactors, there is a large interest in the characterization of 

the behaviour of the system in case of design basis accidents. As an example, the simulation of LOCA 

accidents can be performed by means of straight horizontal pipes equipped with fast opening valves or 

rupture disks to connect the external environment with the primary system. Such pipes are also used to 

locate the proper instrumentation to evaluate the thermal- hydraulic quantities of the flow before the 

section of the rupture. The final goal of the instrumentation is to estimate the flow rate of the liquid 

and vapour phases and the energy released from the rupture with time, so to retrieve the behaviour of 

mass inventory and internal energy inside the primary system during the accidental transient. The flow 

rates of the phases through the rupture cannot be measured in a direct manner because of the 

complexity of the flow. It is therefore necessary to retrieve the value of the flow rates on the basis of 

the characteristic parameters of the two-phase flow, such as the void fraction, the flow pattern, the 

density and the superficial velocities. These quantities are usually measured by means of a special 

instrumentation called spool piece (SP). A spool piece is a combination of two or more instruments 

whose electrical signals are proportional to the characteristic parameters of the two-phase flow. 

Several instruments can be found in a SP, such as Venturi flow meters (VFM) [1], electrical 

capacitance probes (ECP) [2], drag disks [3], turbines [3], wire mesh sensors [4]. 

The correct interpretation of the signals of the instruments requires the development of models able to 

describe the two-phase fluid-dynamics in the test section, the working principle of the instrument 

together with the relationships between the electrical signals and the physical parameters of the flow 

(liquid and gas flow rates, void fraction). The validation of the measurements is often done by 

comparing the prediction of the instruments with the estimation of theoretical models. The complete 

characterization of a spool piece for the estimation of the two-phase flow parameters implies the 

definition of the instruments belonging to the SP from the geometrical point of view, the configuration 

of the test section and the relationship between the electrical signals and the physical quantities. Other 
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important values to be estimated in order to complete the characterization of the flow are the absolute 

pressure, differential pressures along the test section and the temperature of the mixture. During the 

last years several SPs have been tested and characterized at Politecnico di Torino [5-7] by means of 

experimental facilities at low pressure using demineralized water and air in horizontal and vertical 

configuration, with a particular interest in the characterization of annular dispersed and stratified 

annular flows. In this paper the experimental results obtained with a SP consisting of a Venturi flow 

meter and an Electrical Capacitance Probe in horizontal configuration are presented. The Venturi flow 

meter has been widely used for the estimation of the mass flow rate in single phase flow because of its 

simplicity, the low cost and the low maintenance required. For these reasons, with the aim to 

characterize its behaviour in two-phase flow, the VFM has been studied by many authors both 

theoretically and experimentally [8-13]. The Electrical Capacitance Probe has the aim to estimate the 

void fraction of the fluid and the flow pattern. The working principle of the instrument is based on the 

fact that the phases constituting the two-phase mixture are characterized by different electrical 

properties, and that the measured response of the instrument is a function of the void to the fraction of 

the phases [14-16]. The specific ECP tested during the experimental campaign has been designed and 

produced by SIET Company.  

 

2. Test facility 

A picture of the experimental facility used for the characterization of the SP made of the Venturi flow 

meter and the Electrical Capacitance Probe is shown in figure 1. It consists of an air blower, the 

demineralized feedwater system, an air-water mixer, two quick closing valves, a calibrated orifice, an 

open discharge volume, additional instrumentation and the SP. The piping system is made of Plexiglas 

for the direct observation of the flow pattern. The internal diameter is 80 mm. The orifice is installed 

before the air-water mixer and it is used to estimate the air flow rate. It is characterized by a diameter 

of 65 mm and a minimum section diameter of 30,19 mm. The discharge coefficient has been evaluated 

according to the UNI standards and has a value of 0,605. The demineralized feedwater flow is 

imposed by means of two rotameters of different full-scale. The additional instrumentation consists of 

relative and absolute pressure transducers and K-type thermocouples along the experimental facility. 

The pressure transducers are installed on the calibrated orifice to estimate the gas flow rate and on the 

Venturi in order to measure both irreversible and total pressure drops. 

 

 

Figure 1. The experimental facility. 

 

They are characterized by a linear or parabolic response in which the full scale, the output current (4-

20) mA and the conversion resistance of the signal from current to voltage are taken into account. The 

calibration curves of the differential pressure transducers have been obtained by imposing known 

water heads on the instruments. The quick closing valves are used to measure the average void 

fraction in the test section. The estimation of the average void fraction has been done following two 

different procedures:  a) the mass of water between the two quick closing valves is drained from the 
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bottom and measured by means of a weightier (for low void fraction value), b) a mass of water is 

injected in the intercepted region of the facility until a certain level on the cross section is obtained. 

From the knowledge of the total volume of the test section  the intercepted mass of water and the void 

fraction (for high void fraction value) can be evaluated. Figure 2 shows a picture of the Venturi flow 

meter. It is a symmetrical short-type Venturi designed according to ISO 5167-4: 2003 standards. The 

use of a short-type instrument implies a reduction of the manufacturing costs even though the pressure 

losses of the instruments are higher compared to the ones of a standard Venturi because of flow 

detachment phenomena. The symmetrical configuration is an obliged choice if a flow reversal is 

expected. The geometrical parameters of the instrument are reported in table 1. The conical convergent 

section is  L=2.7*(D-d)=108 mm long. 

 

 

Figure 2. The Venturi flow meter. 

 

Table 1. VFM geometrical data 

Parameter Value  

Diameter 80 mm 

Throat diameter 40 mm 

Angle 21 ° 

Total length 340 mm 

 

 

 

Figure 3. The Electrical Capacitance Probe. 

 

Figure 3 shows a picture of the ECP. It is constituted by 9 linear electrodes (length of 400 mm and 

width of 5 mm) set on the external side of the Plexiglas pipe and a central electrode in the middle of 

the cross section. Figure 4 shows the electrodes position in the horizontal test section set up. 
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Figure 4. ECP electrodes configuration in experimental horizontal test section set up. 

 

The peripheral electrodes are welded on both sides to the measurement chain, while the central 

electrode is welded only on one side. The distance between the sockets to which the electrodes are 

welded is sufficient to reduce the presence of parasitic currents. The geometrical parameters of the 

ECP and the maximum working conditions are reported in table 2. 

 

Table 2. ECP characteristics  

Parameter   Value  

Diameter   80 mm 

Length     600 mm 

Wall thickness   5 mm 

Maximum pressure       0.2 Mpa 

Maximum temperature   60 °C 

Angular distance between the electrodes   22,5° 

   

The input/output electrical signals of the ECP are managed by LabView environment. A NI USB-6259 

device is used both as input provider for the electrodes and output receiver. The input signal is 

sinusoidal with a frequency of 25 kHz and amplitude of 5 Vpp. The sequence of measurement is 

performed by exciting one electrode at a time and reading the output of the others receiving electrodes. 

The couple of exciting/receiving electrodes is uniquely defined by a code number. The sampling 

frequency of the ECP is 250 kHz.  

 

A complete description of the theory of the ECP has been previously presented by the authors here 

[17]. The working principle is based on the different values of electrical conductivities and relative 

permittivities of liquid water and air. The RMS value of the voltage drop between an input electrode i 

and a receiving electrode j when a single phase is present in the test section is proportional to the 

electrical properties of the medium, its thermodynamic conditions and the angular distance between 

the electrodes (see equations 1 and 2 for liquid water and air respectively). The same couple of input 

and receiving electrodes in the presence of a two-phase mixture experiences a voltage drop (V in 

equation 3) which depends on the thermodynamic conditions, the distance and the electrical properties 

of the mixture which are dependent on the volume occupied by each phase between the two 

electrodes. By defining a suitable normalization of the signal in two-phase flow as the one proposed in 

equation 3 it is possible to correlate the signal of the ECP with the void fraction of the mixture 

between the electrodes.  
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 𝑉𝐿,𝑖,𝑗(𝑇, 𝜃) = 𝑉𝐿(𝑇, 𝜃)  (1) 

𝑉𝐺,𝑖,𝑗(𝑇, 𝜃) = 𝑉𝐺(𝑇, 𝜃) (2) 

𝑉𝑖,𝑗
∗ (𝛼, 𝜃, 𝑇) =

𝑉𝐿 − 𝑉 

𝑉𝐿 − 𝑉𝐺 
 

(3) 

 

3. Test procedure and experimental matrix 

The test procedure that has been adopted for the experimental activity consists of the following steps: 

1. the velocity of the blower and the water flow rate are imposed,   

2. once a steady state condition is established, the measures from the calibrated orifice (gas flow 

rate), the VFM (differential pressures) and the ECP (electrical response) are acquired for a period of 

30 seconds, in order to gain the information of RMS and standard deviation, 

3. the quick closing valves are closed and both the blower and feedwater system are turned off, 

4. the mass of water intercepted by the valves is drained from the system and measured by means 

of the weight measurement technique.  

At the beginning of each session the single phase response of the instruments both for water and air 

are measured. These values are used in the post-processing of the results to normalize the signals of 

the ECP. For the present experimental campaign, the range of velocities obtained is between 11 and 18 

m/s for air and 0,8 e 8 mm/s for water. The resulting flow patterns are stratified and annular stratified. 

For the same couple of flow rates of the liquid and gas phases two separate tests have been carried out 

in order to assess the repeatability of the measurements.  

 

4. Results and discussion 

The measurements and the characterization of the Venturi flow meter and the Electrical Capacitance 

Probe are assessed in the present chapter. Figure 5 shows the experimental relationship between the 

void fraction and the flow quality for the two experimental sets. The reproducibility of the results is 

considered satisfactory: the data dispersion is considered to be caused by different entrainment 

phenomena and the effect of ambient pressure and temperature, that are not easily reproducible.   

 

 

Figure 5. Flow quality as a function of the void fraction. 

4.1. Characterization of the Venturi flow meter 

Figure 6 shows the dependency between the measured pressure loss inside the VFM and the total flow 

rate. Three curves, characteristic of the three frequencies of the blower can be observed.   

In the tested range the effect of variation of the gas velocity has a greater influence with respect to the 

liquid phase on the pressure loss inside the VFM. From the values of experimental pressure loss, both 
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in single-phase and two-phase flow, the relationship between the two-phase multiplier Φg
2
 and the 

Lockhart-Martinelli parameter 𝜒 , defined as in equation 4, has been derived (figure 7).  

 

𝜒 =
(1 − 𝑥)

𝑥  
 (

𝜌𝑔

𝜌𝑙
)

0.5 

 
 

(4) 

 

 

Figure 6. VFM pressure loss vs total flow rate. 

 

  

 

Figure 7. Experimental two-phase multiplier vs Lockhart-Martinelli parameter. 

 

Another important measure obtained from the VFM is the irreversible pressure loss. The irreversible 

pressure loss shows an higher sensibility to the variation of liquid flow rate with respect to the 

standard VFM pressure loss (figure 8), and it is particularly influenced by the flow pattern. Three 

characteristic curves can be observed in figure 8: considering a fixed value of total mass flow rate 

higher pressure losses are measured in the presence of an higher air flow rate. By analysing the 

experimental results related to the irreversible pressure losses we found that they are strongly 

dependent on the density of the gas phase and on the superficial velocities of the phases (j l, jg). An 

empirical correlation has been derived for the estimation of the irreversible pressure loss through the 

VFM on the basis of the characteristic quantities of the two-phase flow (equation 5).  
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∆𝑃𝑖𝑟𝑟 = 0,2705 (𝜌𝑔𝐽𝑔
1,91) (

𝐽𝑙

𝐽𝑔
)

0,13

  
 

(5) 

The accuracy of the relationship in equation 5 with respect to the experimental data is of the order of 

12%. In order to reduce the error the dependency of the correlation on the typology of the flow pattern 

has to be considered. 

 

 

Figure 8. VFM irreversible pressure loss vs total flow rate. 

4.2. Characterization of the electrical capacitance probe 

 

Figure 9 shows the behaviour of the normalized signals V*ij as a function of the position of the 

electrodes, considering as input electrode i the number 1 in the upper part for the figures on the left 

side and the number 9 in the bottom part for the figures on the right side. The curves are expressed by 

using the experimental value of the void fraction as parameter.  

Test section void fractions between 0,978 – 0,985 are typical of tick film annular flow regimes. The 

lower electrode shows a typical response of an annular stratified flow pattern.  

 

In Fig. 9 the different dependency on the void fraction between the two chosen electrodes can be 

observed. The major contribution to this difference is expected to be the stratification of the liquid 

phase at the bottom of the cross section, which is clearly visible on the electrode 9. As the velocity of 

the gas phase increases entrainment phenomena of liquid droplets in the gas phase are more evident 

and this explains an increase of the dimensionless voltage drop of the electrode 9 as the void fraction 

increases.  

In all of the cases considered in figure 9 an increase in the measured void fraction inside the test 

section causes a general increase in the output signal of the ECP, leading to the values of the full air 

case. This is more evident when the input signal is transmitted from electrode 9 which is always 

covered by a water level characterized by a smaller thickness as the void fraction increases.  
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Figure 9. Dimensionless voltage drop for electrodes 1 and 9. 

 

Figure 10 shows the dependency on the void fraction for the electrodes at the minimum angular 

distance of 22,5° where the electrical signal is maximum for every local void fraction.  

 

 

Figure 10. Dependency of the neighbouring electrodes on the void fraction. 

 

The combination of the electrodes 2-3 is located in the upper part of the cross section. For low values 

of flow rates the behaviour of the signal is independent of the value of the void fraction since the flow 

pattern is stratified. On the other hand, the electrodes at the bottom of the cross section are largely 

influenced since they are able to experience the variation of thickness of the liquid film as the average 
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void fraction on the cross section changes. For the couple of electrodes 8-9 figure 10 shows the values 

of void fraction after which electrode 8 becomes uncovered by the water level (between the second 

and the third value of experimental void fraction). Figure 11 shows the same results of figure 10 with 

reference to the central electrode. The signal of the central electrode has a linear behaviour as a 

function of the void fraction, whose slope depends on the position of the external electrodes on the 

cross section. As in figure 10, an higher variation in the signal is recorded for the couples lying at the 

bottom of the cross section.  

 

 

Figure 11. Dependency of the neighbouring electrodes on the void fraction (central electrode). 

 

5. Conclusions 

A preliminary methodology and the procedures to characterize a spool piece constituted by a Venturi 

flow meter and an Electrical Capacitance Probe for the experimental estimation of the flow rates of the 

phases in a horizontal two phase flow have been presented. The results obtained show the good 

capability of the spool piece to measure the necessary physical quantities suitable for the estimation of 

the flow rates. The Electrical Capacitance Probe is useful for the recognition of the flow pattern as it is 

very sensitive to the characteristic parameters of the two-phase flow. The information of the void 

fraction distribution along the cross section can be used to define the most appropriate experimental 

correlation between the pressure loss on the Venturi flow meter and the superficial velocities of the 

phases, so to decrease the error in the estimation of the flow rates.  

The use of the VFM for the estimation of the two-phase flow rate is promising because both 

irreversible and total pressure drops are highly influenced by the behaviour of the phases. 

Nevertheless, the information provided by the instrument is not self-standing as the complete 

characterization of the flow also requires the understanding of the flow regime and of the void 

fraction, which are provided in this case by the ECP.  

With the aim to consolidate the presented methodology and to broaden its applicability for different 

flow patterns, future work will be devoted to the implementation of deterministic and probabilistic 

approaches for the analysis of the signals of the SP for higher void fraction conditions and transition 

flow regimes.  
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List of symbols   

 

L [m] Length of VFM W [kg/s] Flow rate 

D [m]  Test section diameter θ Angle between electrodes 

d [m] Throat diameter of VFM  Φ
2
  Two phase multiplier  

V [Volt]  Voltage  J  Superficial velocity  

α  Void fraction  Subscripts  

T [°C]  Temperature  tot Total 

χ  Lockhart-Martinelli parameter  L  Liquid  

x  Flow quality  G  Gas  

ρ [kg/m
3
] Density i, j  Indexes  
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