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Abstract. We investigate the Geometrothermodynamics of the 2-dimensional submanifold
E corresponding the space of thermodynamic equilibrium states for a static and spherically
symmetric hairy to black hole solution in Lorentz non-invariant massive gravity. We show that
it is possible to consider a fundamental thermodynamic function as a homogeneous function
of degree 1 in the extensive variables, as classical thermodynamics demand, in order to be
consistent with the physical meaning of the intensive variables. The geometry of the space of
equilibrium states is computed showing that it contains information about the thermodynamic
interaction, critical points, and phase transitions structure.

1. Introduction
The research done by Hawking [1] and Bekenstein[2, 3, 4] in the early 1970s, showed that it is
possible to find a relationship between the properties of the black holes (event horizon) and the
laws of thermodynamics. For example, the surface gravity is related with the temperature, and
the sum of the areas of the black hole horizons cannot decrease, which resembles the classical
thermodynamic entropy. Therefore, an entropy which is proportional to the area was attributed
to the horizon of the black hole. Thus, they also realized that one can formulate the four laws
of black hole dynamics in a manner analogous to the laws of classical thermodynamics [5].

In spite of the fact that the main objection with respect to this analogy was resolved [6] (one
that argued that if black holes possess entropy as well as energy, then they must have a non-zero
temperature and must radiate which seemed to contradict the view that nothing can escape the
black hole horizon) still some others remain, such as the non-homogeneity of the fundamental
equation [7] which describe the thermodynamics of the black holes, or the meaning of a phase
transition in these exotic thermodynamic systems.

The study of the thermodynamics of the black holes by means of geometry has been a subject
of intensive research [8, 9, 10, 11, 12, 13]. This geometric study has been considered in several
papers by means of different approaches like Weinhold’s theory [14], Ruppeiner’s theory [15] or
the most recent theory called geometrothermodynamics [16]. Geometrothermodynamics (GTD)
is a formalism that relates a contact structure of the phase space T with the metric structure
on a special subspace of T called the space of equilibrium states E .

On the other hand, the most successful cosmological model that is in agreement with the
observational data implies the existence of a vacuum energy related with the cosmological
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constant Λ whose magnitude is unnatural from the effective field theory point of view [17].
Hence, a dark energy is needed to reconcile general relativity with the observations. The dark
energy solves the problem of the accelerated expansion of the Universe. Nevertheless, the interest
to explain the acceleration of the universe without resorting to the dark energy has motivated
the search for large-distances modified theories of the gravity, the Lorentz- breaking massive
gravity is one of these models which is free from pathologies such as ghosts, low strong coupling
scales or instabilities at full non-perturbative level [18, 19, 20]. Although these models do not
require the existence of Λ, the cosmological constant problem remains open [21]. A generalized
Schwarzschild solution for this model has been obtained by D. Comelli et al. which is an exact
black hole solution showing a nonanalytic hair [22].

In this work, we will use geometrotermodynamics to formulate an invariant geometric
representation of the thermodynamics of a static and spherically symmetric hairy black hole
solution in massive gravity, using a thermodynamic fundamental equation of degree 1.

This paper is organized as follows. In Section 2, we review the generalized Schwarzschild
solution for massive gravity and its thermodynamics. In Sec. 3, we present a brief review of the
GTD formalism. In Sec. 4, we apply the formalism of GTD to the generalized Schwarzschild
solution in massive gravity and show that the geometric properties of the equilibrium space
are in correspondence with thermodynamic properties of the black hole. Finally, in Sec. 5 we
present the conclusions.

2. Thermodynamics of the black hole solution in Lorentz non-invariant massive
gravity
The general action corresponding to massive gravity is given by the expression [20, 22, 23, 24,
25, 26]:

I =
∫
M

d4√g
[
− 1

16π
R + Λ4F(X, V i,W ij)

]
−
∫

∂M
d3√γ

K

8π
, (1)

where F is a function of four scalar fields φµ that are minimally coupled to gravity by the
covariant derivatives since:

X = Λ−4gµν∂µφ0∂νφ
0 ; V i = Λ−4∂µφi∂µφ0 ; W ij = Λ−4∂µφi∂µφj − V iV j

X
, (2)

with latin and greek indices running on the space and spacetime, respectively. The second
integral is instead the Gibbons-Hawking-York boundary term [28, 29] where γ is the metric
induced on the boundary ∂M and K is the trace of the extrinsic curvature Kij = 1

2γk
i∇knj of

M with unit normal ni. Such a boundary term is required to have a well-defined variational
principle in the presence of the border ∂M.

Spherically symmetric black holes in massive gravity have been investigated in [22, 28, 29]
and it was found that a set of coordinates always can be found where the solution can be written
in the form:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 sin2 θdϕ2) , (3)

and the fields are given by the expressions [28]:

φ0 = Λ2[t + h(r)] ; φi = φ(r)
Λ2xi

r
. (4)
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The metric functions f , h and φ are given by the following equations,

f = 1− 2M

r
− Q

rλ
(5)

h = ±
∫

dr

f

[
1− f

(λ(λ− 1)Q
12m2rλ+2

+ 1
)−1

] 1
2

, (6)

φ(r) = r , (7)

where λ 6= 1 is a positive constant, M and Q are integration constants. In the case λ > 1
the gravitational potential is asymptotically Newtonian and the parameter M coincides with
the ADM mass, while Q is a scalar charge whose presence reflects the modification of the
gravitational interaction as compared to General Relativity.

The roots of the lapse function f(gtt = 0) define the horizons r = r± of the spacetime. In
particular, the null hypersurface r = r+ can be shown to correspond to an event horizon, which
in this case is also a Killing horizon, whereas the inner horizon at r− is a Cauchy horizon.
Therefore from f(r+) = 0 [26] we get,

1− 2M

r+
− Q

rλ
+

= 0 , (8)

From the expression (8) for the horizon radii r+ we obtain the following relationship,

M(r+, Q) =
1
2
r+

[
1− Q

rλ
+

]
, (9)

From the area-entropy relationship, S = πr2
+, the equation (8) can be rewritten as

M(S, Q) =
1
2

(
S

π

) 1
2
[
1− Q(

S
π

)λ
2

]
. (10)

This equation relates all the thermodynamic variables entering the black hole metric in the
form of a fundamental thermodynamic equation M = M(S, Q). Also, this can be considered
as the thermodynamic potential related to the canonical ensemble of the system so that the
corresponding heat capacity contains information about the phase transitions of the system.
Equation (10) is an inhomogeneous function in the extensive variables S and Q. Following
Davies [30] we homogenisize the fundamental equation by redefining the parameters Q and S
as,

Q = qλ , ; S = s2 . (11)

Then, equation (10) becomes a homogeneous function of degree 1 in the extensive variables.
With the definitions (11) we have,

m(s, q) =
s

2
√

π

[
1− qλπ

λ
2

sλ

]
. (12)
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This procedure was performed explicitly in the context of GTD in [31]. Under this
consideration the first law of the thermodynamics can be written as,

dm = Tds + φdq , (13)

with m = m(s, q). According with equation (13), the expression for the temperature T and the
potential φ are given by the thermodynamic equilibrium conditions: T =

(
∂m
∂s

)
q

and φ =
(

∂m
∂q

)
s
,

which lead to the following results,

T =
1

2
√

π

[
1− qλπ

λ
2 (1− λ)
sλ

]
, (14)

φ = − 1

2π
1−λ

2

[
q

s

]λ−1

. (15)

It is easy to show that the temperature (14) coincides with the Hawking temperature. The heat
capacity at constant values of q is given as

Cq = T

(
∂s

∂T

)
q

=

(
∂M
∂s

∂2M
∂s2

)
q

, (16)

where the subscript indicate that we should compute keeping the charge constant. Using the
fundamental equation (12) we get,

Cq =
s
[
sλ − qλπ

λ
2 (1− λ)

]
qλπ

λ
2 (1− λ)

. (17)

According to Davies [30], second order phase transitions take place at those points where the
heat capacity diverges, i. e., for

qλπ
λ
2 (1− λ) = 0 , (18)

in this case, because λ 6= 1 there are no points where the heat capacity becomes singular;
therefore, this thermodynamic system does not present second order phase transitions. We can
also observe that the the thermodynamic variables T and φ are homogeneous functions of zero
order, as in the standard thermodynamics. It is worth noticing in the case of more general black
hole solutions of massive gravity, the investigation of the heat capacity leads to a non trivial
phase transition structure [27]. In the present case, however, no phase transitions are found.

3. Brief review of geometrothermodynamics
Geometrothermodynamics (GTD) [16] is a formalism that has been applied to different
thermodynamic systems(ordinary systems like the Van der Waals gas or exotic systems like black
holes [32, 33, 34, 35, 36, 37, 38, 39] in order to get consistent results to describe geometrically
the phases transitions and thermodynamic interaction using Legendre invariant metrics.

In GTD we work with a (2n+1)-dimensional manifold T with a set of coordinates ZA which
allow us to define a non-degenerate Legendre invariant metric G together with a linear differential
1-form Θ which fulfills the condition Θ ∧ (dΘ)n 6= 0, where n is the number of thermodynamic
degrees of freedom, ∧ represents the exterior product and d the exterior derivative. In GTD we
also have the space of thermodynamic equilibrium states which is a submanifold E ⊂ T defined
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by means of a smooth embedding mapping ϕ : E −→ T such that the pullback ϕ∗(Θ) = 0. By
means of ϕ∗(G) = g a metric g is induced in E , giving a Riemannian structure to this space.
Therefore, in GTD the physical properties of a thermodynamic system in a state of equilibrium
are described in terms of the geometric properties of the corresponding space E .

If we consider the (2n + 1)-dimensional space T coordinatized by the set ZA =
{
Φ , Ea , Ia

}
where A = 0, . . . , 2n and a = 1, . . . n, the 1-form Θ will be,

Θ = dΦ− IadEa . (19)

We choose now the subset Ea as coordinates of E . Then the mapping ϕ is given by,

ϕ : (Ea) −→ (Φ , Ea , Ia) , (20)

and the condition,

ϕ∗(Θ) = ϕ∗(dΦ− δabI
adEb) = 0 , (21)

leads to the standard conditions of the thermodynamic equilibrium and the first law of
thermodynamics,

∂Φ
∂Ea

= Ia , dΦ = IadEa . (22)

The second law of the thermodynamics under this formalism is written as,

∂2U

∂Ea∂Eb
≥ 0 , ;

∂2S

∂F a∂F b
≤ 0 , (23)

where U and S represent the energy and entropy for each of the corresponding thermodynamic
systems. Here Ea (F a) represent all the extensive variables other than U (S).

In GTD the only requirement for defining a metric G of the space T is that it fulfills the
condition of Legendre invariance. Therefore, we have many possibilities of constructing a metric
with these features, one of them is the following,

G = Θ2 + (δabE
aIb)(ηcddEcdId) , (24)

where δab = diag(1, 1, . . . , 1) and ηab = diag(−1, 1, . . . , 1) . It can be shown that the metric (24)
is invariant with respect to a total Legendre transformation which changes the variables without
tilde {Φ, Ea, Ia} to the tilde variables {Φ̃, Ẽa, Ĩa} using the following algebraic rules,

Φ = Φ̃− ẼaĨ
a , Ea = −Ĩa , Ia = Ẽa . (25)

Applying the pullback ϕ∗ to the metric (24), we obtain the corresponding thermodynamic metric
g,

gGTD = ϕ∗(G) =
(
Ec ∂Φ

∂Ec

)(
ηabδ

bc ∂2Φ
∂Ec∂Ed

dEadEd
)

, (26)

which depends only of the fundamental potential Φ = Φ(Ea). If we know the fundamental
potential of the thermodynamic system that we want to study, the corresponding metric g can
be computed explicitly and the relations between thermodynamic and geometry can be also
studied.
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4. Geometrothermodynamics of the black hole solution in Lorentz non-invariant
massive gravity
According with [40], the geometrothermodynamic metric that we should use to investigate the
thermodynamic properties of black holes is given by the expression (26). If we define Φ = m
and we assume that Ea = {s, q}, then we have a system with two thermodynamic degrees of
freedom. Under these considerations we get,

gGTD =
(
s
∂m

∂s
+ q

∂m

∂q

)(
− ∂2m

∂s2
ds2 +

∂2m

∂q2
dq2
)

. (27)

Using the expressions for the m, as was given in Eq. (12), we obtain explicitly the GTD metric
coefficients which can be written as,

gGTD
ss =

λ(λ− 1)

4π
2−λ

2

qλ
[
qλπ

λ
2 − sλ]

s2λ
, (28)

gGTD
qq = −λ(λ− 1)

4π
2−λ

2

qλ−2
[
qλπ

λ
2 − sλ]

s2λ−2
, (29)

and the equation (27) takes the form,

gGTD = f(s, q)
[ds2

s2
− dq2

q2

]
, (30)

where,

f(s, q) =
λ(λ− 1)

4π
2−λ

2

qλ
[
qλπ

λ
2 − sλ]

s2λ−2
. (31)

The curvature scalar corresponding to the metric (30) takes the form,

RGTD = 0 . (32)

This result tell us that the curvature scalar of the space of thermodynamic equilibrium states does
not have points where becomes singular. Also, in accordance with the geometrothermodynamics,
the system does not have interaction thermodynamics [40].

5. Conclusions
In this work, we studied the geometrothermodynamics of a black hole solution in massive
gravity. Using this formalism we found the geometric properties of the corresponding manifold
of equilibrium states. We found that the corresponding thermodynamic curvature turned out
to be zero, indicating that there is not thermodynamics interaction. We also show that the
GTD correctly describes the fact that this thermodynamic system has not phase transitions,
since they are characterized by divergencies of the heat capacity which are described in GTD
by curvature singularities.
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It is interesting that, according to GTD, the black hole considered in this work does not
posses thermodynamic interaction. In fact, this intriguing behavior has been also found in the
case of topological black holes in Horava-Lifshitz gravity [41] and in cosmological models [42].
This means that in GTD the presence of gravitational interaction does not necessarily imply
the presence of thermodynamic interaction. We expect to study this intriguing relationship in
future works.

We assumed in this work Davies’s proposal to solve the problem of the lack of homogeneity of
the fundamental equation. We have considered the definition (11), with which the fundamental
equation (9) becomes a homogeneous function of degree 1 in the extensive variables in order to
have consistency with the physical meaning of the intensive variables which must be homogenous
of degree zero.
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