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Abstract. We show that a recent formulation of the principle of stationary action, compatible
with generic non conservative interactions, is suitable for fermionic and supersymmetric systems.
The main features of the mechanics contained in this new action principle are also encountered
in the examples discussed in this work.

1. Introduction

The evolution of mechanical systems can be irreversible and non invariant under time reversal.
Such systems are studied usually by means of their equations of motion. In two recent papers,
Galley [1, 2] gives a systematic proposal for a lagrangian formulation for nonconservative systems.
This proposal amounts to a modification of Hamilton’s variational principle, introducing a
nonconservative “potential”. This formalism is inspired on the closed time path formalism,
originally proposed by Schwinger [3] for field theory. Supersymmetry is a symmetry which has
allowed consistent formulations of unification theories of all fundamental forces. It imposes rather
strong constraints on the particle content, mass spectrum, and interactions. Thus we consider
interesting to explore if supersymetry is compatible with this formulation for nonconservative
systems [4]. The generalization for supersymmetric systems is done in the superspace formalism.
The boundary conditions must be also modified, and are given in terms of superfields. We
illustrate the formalism by some examples.

2. Galley’s mechanics for non conservative systems

Galleys formulation is based on the doubling of the degrees of freedom of a conservative system
with Lagrangian L(q,q), ¢ — (q1,q2). The action is defined as the integral of a conservative
Lagrangian over two trajectories in configuration space, each one for one of the two copies of
the original degrees of freedom. To this action, it is added the integral of a generalized potential
K(q1,¢1,92,G2), that couples these two trajectories. This potential is antisymmetric under the
interchange ¢q; <+ g2. Thus there is a new Lagrangian

AZL(Ql;Qlat)_L(Qqu'Qat)+K(Q1aQ1,Qquz)- (1)

The variation of this action is given under the boundary conditions at the initial and final times
dq1(ti) = 6q2(ti) = 0, (2)

dqi(ty) = dgqa(ty), q1(ty) = ga(ty), q1(ty) = ga(ty). (3)
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The last three equations define the so called equality condition. Thus, the equations of motion
are
0 d 0

—(L+K)———(L+K)=0 4

G L+ ) = G (L4 K) = (®)

0 d 0

— (L — ————(L-K)=0. 5
G (L= ) = S (L= K) 5)
Taking into account the antisymmetry of the potential, and making the physical limit ¢1 = ¢ =
q, (17) and (14) coincide, giving the nonconservative equations of motion

oL d oL 0 d 0
8(] dt 8(] K (an dt an) (QIaqqu:qQ) S ( )
A convenient change of variables is given by
0 = 5(q1 + @), (7)
q- = q1 — Go- (8)

In the physical limit, the variable ¢_ turns to zero and the variable ¢4 reduces to the physical
coordinate ¢. In addition, the equality condition gets a more practical statement in terms of
this coordinates.

2.1. Dissipative systems

The doubling of the degrees of freedom allows us to introduce terms of the form ¢_¢’t, which
allow to construct “generalized potentials” K(qi,¢+) for dissipative forces. The form of the
lagrangian for a general system is

A= L(q1) — L(g2) + K(qx). 9)

A simple, but illustrative example is the damped harmonic oscillator, with the nonconservative
lagrangian

.. € . .
A=gig- —w’qrg- + F(d-ar = dra-), (10)

which, after the variation as previously shown, leads to the well-known equation of motion
G+eq+uwiqg=0. (11)

3. Fermionic degrees of freedom
Now we state formally Galley’s action principle for a fermionic system. We define the action S
as follows

stz = [ At i) (12)

where the generalized fermionic lagrangian is, in analogy with the bosonic case, is given in terms
of the doubled variables 11 and o

AW, 93] = LT, 4F) — LS, 495) + K (43, 97). (13)
The boundary conditions are the same as in the previous section
d9h1(ti) = 0eha(ti) = 0, (14)

P1(ty) = Palty), Ui(ty) = a(ty), dp1(ty) = 6epal(ty). (15)
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As pointed out by Teitelboim [5], the boundary conditions mus take into account that the
equations of motion of fermions are first order, hence only one boundary condition is required.
Thus, if 1 and 19 coincide at the final time, they must coincide also at the initial time, which
should be added to (14) for consistency. Performing the variation of the action, the usual
Euler-Lagrange equations are obtained

d oA oA
i (aw) i " 1o

3.1. Example: damped fermionic oscillator
Consider the lagrangian, given in terms of the + variables:

A=2" (W_}MZL + W}JZJr) +2z (W_L@M + Z'?j)JrU_L) +e(W-vr +9i9), (17)

where z = x + iy is a complex number. The equations of motion (taking the physical limit) are
iz —wip = 0, (18)

2iz"p +wp = 0, (19)

whose solutions are given by the complex exponentials

w(—iz —y) ]
t) = ———t 2
w(t) = wexn |Gz, (20)
- - w(iz —y) ]
t) = — =+t 21
0 = doe g, (21)
which correspond to a harmonic motion, with an exponentially decaying amplitude.
In terms of the coordinates ¢ 2 we have
A=z <i1/;11/11 + i%bﬂ/;l) +wiprpy — (i%% + Wz%) — Wity
+y [@/_12@01 — iy — oty + @517/_}2} ; (22)
where we can see that this lagrangian fits Galley’s prescription by means of the identifications
L= a(ipp+ipp) +wiy, (23)
K =y [@2% — Pyapa — oty + Yt . (24)

As required, this generalized (fermionic-) potential is antisymmetric under ¢; > ¥s.

4. Supersymmetric action
The supersymmetric version of Galley’s action principle is presented in the N = 2 superspace
formalism (some general remarks on superspace and notation conventions can be found
in Apendix A). For simplicity, let us consider a system described by a single (superfield)
supercoordinate ®(t,6,0).

The non conservative supersymmetric lagrangian density is defined as

[(®1, P2) = L(P1) — L(P2) + K(P1, P2). (25)
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where K is the non conservative “superpotential”’. The action is defined as
S = /dX (@1, ). (26)

In order to perform the variation of the action, the following boundary conditions are imposed

51|, = 6®al, =0, (27)

Oy, = P2y, , D®|,, = DOy, , D[, = Doy, , 001, = 0@, . (28)
According to the discussion in the fermionic case, we should impose the aditional condition
P (X, 6)|ti = Oo(X, 5)‘&-

The variation of the action leads to the Euler-Lagrange equations

ar ar  _ or
0B, b oD®, b oD, 0 (29)

In fact, the boundary terms of the previous variation are given by

or or _ or or
B = /dX {D (’718D<1>1 _”QaD%) D ("10[7@1 _"QaD%)}
_Z_D< o 8F>tf_z, D( o ar)tf
- Topa, ~ "opa, )|, "ops,  "™opa, )|,
o oL +K) oL +K) (L - K) G(L’—IC)} by
- “{(Dm) ops, T "Pepe, P ops, P opw, f|,
. AL +K) _IL+K) - OL-K) 8(£—K)}tf
— i (D)L + D= (D)t — D
! {( " =ope, " one, P 5e, P ons, 4, BV
In these expressions, — means setting 6,0 = 0 in the expressions to the right. Clearly,

—(®V) = (—P)(—V¥). With the last expression we can see that, because of the boundary
conditions, all of these terms cancel or vanish.

4.1. Example: Damped supersymmetric oscillator
The lagrangian density in the & variables is given by

I'=m[z*D®_D®, + 2D®, DO —wd & ], (31)

where z = % {\/1 — (i)2 +22‘;}

The equation of motion, in the superspace language, is
[2DD — 2*DD]® — w® = 0. (32)

In components, (32) is equivalent to the equations of motion of the damped (bosonic) oscillator
(11), and those of the fermionic oscilators (18), (19). The solutions are

Wty = T =5)ty, (33)
D) = el =5ty (34)
q(t) = [eiwthO1+€_iw/tQO2} 6_%, (35)
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where W' = w4/1 — (i)2

In terms of the original coordinates we have

r— \2% [w’D<1>1D<1>1 — W@ — (W' DB DBy — w3 + zg (D®,D®; — DD DD,) |, (36)
w

so that, we can identify the supersymmetric potential

K= z‘eﬁ (D®3D®; — DB, DD) . (37)

w

5. Conclusions

In this work we have applied Galley’s principle of stationary action to fermionic and
supersymmetric systems. Except for the additional boundary condition, the generalization is
straightforward. Examples discussed fit the prescription for a non conservative lagrangian. The
generalized potential can be written in superfield form.
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Appendix A. Superspace Supersymmetry

N = 2 superspace contains a commuting variable ¢, which plays the role of time, and two
anticommuting variables # and 6, wich are complex conjugate of each other [6]. Superspace
translations are defined

00 = ¢ (A.1)
50 = (A.2)
ot = —i(ed +&h). (A.3)
The variation of a supercoordinate ®(t, 0, 0) is given by
0P = eQP + €QP, (A.4)
where, the generators of super-translations are defined
Q = 0y — 00, (A.5)
which satisfy the algebra of supersymmetry
{Q7 Q} = —2P, (
QQ=0Q=0 (A8)
The covariant derivatives are
D = 9y + i00;, (A.9)
D = 85 + 00, (A.10)
which satisfy the algebra
{D,D} = 2P, (A.11)
DD = DD = 0. (A.12)

In order to get expressions in component form, we use the following expansion ®(t,0,0) =
q(t) + 16 + iy — 00 A.
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