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Abstract. Two simplified variants of a dusty, condensed dispersed phase and colloid plasmas
models are considered as a thermodynamically equilibrium combination of classical Coulomb
particles: a 2-component electroneutral system of macro- and micro-ions (+Z,−1) and a 3-
component electroneutral mixture of macro-ions and two kinds of micro-ions (+Z,−1,+1). The
base for a consideration is a phase diagram of dusty plasma by Hamaguchi et al (1997 Phys.
Rev. E 56 4671) for an equilibrium charged system with the Yukawa potential. Parameters of a
splitting the one-dimensional melting boundaries of the Hamaguchi diagram (i.e. hypothetical
melting density gap between separate freezing liquid line (liquidus) and melting crystal line
(solidus)) are discussed. Estimation of a density gap value is made. Additional splitting of
all phase boundaries in the three-component model because of so-called non-congruency of all
phase transitions in this model is discussed also.

1. Introduction
Phase transitions in equilibrium highly asymmetric ensemble of macro- and micro-ions has
been studied for a very long time. A number of simplified Coulomb models accompany these
investigations. One example is a model of Charged Hard Spheres (CHS), which is used to
describe strong asymmetric electrolytes (see e.g. [1] and references therein). One more example
is so-called plasma “with condensed dispersed phase” (CDP) of 1980-s [2], and it has been the
subject of study in the last 30 years. Dusty and colloid plasmas can be considered in the simplest
(“primitive”) approximation CDP-plasma and contemporary fully-equilibrium as an equilibrium
electroneutral two-component highly asymmetric system of classical macro- and micro-ions with
fixed charge numbers +Z and -1 (Z ≫ 1). Such a two-component system (denoted below as
(+Z,-1)) or a more complicated three-component electroneutral system with additional positive
micro-ions (+1) (denoted below as (+Z,-1,+1)) are considered as simplest dusty and colloid
plasmas models [3] and so-called highly charged colloid systems [3, 4]. Both mentioned above
models are well known in traditional electrolyte theory and could be successfully studied using
analytical approximations such as the Debye-Hueckel app. and its improved versions (see e.g. [5])
as well as within exact computational modeling methods: Monte-Carlo, Molecular Dynamics etc.
In the present paper we consider 3 systems:

A electrodischarge dusty plasma which is not fully equilibrium but all the system is trapped by
a external field, the temperatures of macro- and microions are different (Z ∼ 102−103, Te 6=
Ti 6= Tz) [6];
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B thermally ionized equilibrium isothermal CDP-plasma of fire gases or dense alkali metal wet
steam (Z ≈ const, Z ∼ 10–103, Te = Tz) [2];

C fully equilibrium colloid plasma of highly charged macro-molecules in liquid, temperature
is room (Te = Tz = Ti) [7].

A base model for a comparison is

D OCP (one-component plasma) of macroions (charge numbers Z) with the Yukawa potential
and a fixed screening length.

The next significant simplification is ordinary in dusty and colloid plasmas theories. Instead
of considering 2 and 3-component Coulomb models (+Z,-1) and (+Z,-1,+1) with the long-range
(Coulomb) interaction potential, depending on a distance only, we consider a one-component

system of macro-ions (+Z) with the effective screened short-range (Debye) interaction potential
of Yukawa type, with the parameter (screening length) depending on temperature and density
of micro-ions.

Vij(r) = ZiZj/r, (1)

Veff (r) => Φ(r | Ti, Te, ni, ne) =
(Ze)2

r
exp(−r/rD), rD =

(4πe2ne

Te
+

4πq2i ni

Ti

)

−1/2
. (2)

Here Vij – Coulomb potential, Φ – Yukawa potential, rD – Debye (screening) length,
Te, Ti, Tz , ne, ni, nz – micro- (electrons -1 and ions +1) and macroions (Z) temperatures and
concentrations respectively.

Well-known phase diagram for this model in Γ – κ coordinates [8] was the starting point of
the present paper.

Γ =
(Ze)2

aT
, κ =

a

rD
, a = (3/4πnz)

1/3, (3)

a – Wigner-Seits radius.
This diagram has been obtained by methods of exact computer simulations. There are three

phase states of a Debye system with the potential (2): fluid, crystal bcc and crystal fcc. All the
three boundaries are one-dimensional curves, while it is well-known that there is a first derivative
discontinuity of thermodynamic potential, and thus there must be at least one gap (entropy,
density) in a process of melting like in a process of a first-order transition. This density gap in a
melting process is a finite for all systems except the Coulomb model of one-component plasma
with the frozen neutralizing medium (OCP) and can be significant (∼ 5–10%).

The purpose of this paper is, firstly, to plot an equivalent of the Hamaguchi phase diagram
in “natural” coordinates temperature – density. And, secondly, it is to analyze character of
splitting between different boundaries of fluid freezing and crystal melting. Also, the purpose
of this paper is to analyze character of a noncongruence of phase transitions and compare this
phenomenon with a congruent version of these boundaries.

2. Phase diagrams of the equilibrium Yukawa system in the natural coordinates
One can plot the Hamaguchi diagram in the “natural” coordinates in different ways. It depends
on the exact definition of thermodynamic parameters of microions background. In a variety
of papers ( [8] and others) it is implicitly presumed that this background is passive one with
constant parameters: Nm is density of microions and Tm is temperature of microions (the
subscript “m” denotes “medium” as in [9]). In particular, temperature of microions Tm may
be not the same as temperature of macroions. The density Nm may also be concerned with
the density of macroions by a elektroneutrality condition. Finally, a thermodynamic role of
this “medium” in a widely spread approach [8] is to hold the elektroneutrality condition and to
guarantee Debye screening of a macroion interaction. At the same time a macroion radius of the
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Debye screening rD(ni, ne, Ti, Te) does not depend on a change of a phase state of a macroions
subsystem. It can be consistent only in the case when the density of microions, their temperature
Te and the temperature of macroions Ti are constant during phase transitions of the system of
macroions. The isochoric conditions are considered in the papers [8] and others, and density gaps
of macro- and microions during phase transitions are not stipulated. Nevertheless, even taking
into account this limitation, the Hamaguchi diagram [8] can be plotted in the natural coordinates
(nz, Tz). The authors consider completely equilibrium system with the same temperatures of
macro- and microions Tz = Ti = Te = T (only for models B and C!) to make this supposal valid.

Let’s examine the diagram in the coordinates nz −Tz (nz = n, Tz = T ) taking as an example
the model (+Z,−1). The key moment (the fact) is in the case (in addition to the equality of
temperatures) densities nz and n depend on each other linear because of the elektroneutrality
condition (Znz = n). So, we have

Γ ∝ (n/T 3)1/3, κ ∝ (n/T 3)1/6 => Γ =
κ2Z

3
. (4)

In particular it means that if the value Z is fixed, all the variety of points on the two-

dimensional plane nz–T is equal to a one-dimensional curve Γ ∼ κ2 on the diagram Γ − κ [8].
This curve is a line in the often using logarithmic presentation lg n–lgT in a theory of Coulomb
systems (figure 1).

Figure 1. Phase diagram of a Debye system with the boundary lines Z∗ = const.

Thus, there are 3 boundary values depending on a quantity of the charge of a macroion
Z = Z∗

1 , Z
∗

2 , Z
∗

3 . These values separate 4 types of phase diagram of the Yukawa model – the
equivalent of the model (+Z,-1):

• Z = Z∗

1 : – a line Γ ∼ κ2 is tangent to the melting boundary bcc-fluid;

• Z = Z∗

2 : – a line Γ ∼ κ2 intersects the boundary bcc-fluid and is tangent to the boundary
of the transition bcc-fcc;

• Z = Z∗

3 : – a line Γ ∼ κ2 intersects the boundaries bcc-fluid, bcc-f and passes through the
triple point.

Calculations of this paper gives the following values Z∗

1 , Z
∗

2 , Z
∗

3 :

Z∗

1 = 339, Z∗

2 = 600, Z∗

3 = 810.
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Figure 2. Phase diagram of a Debye system for Z∗ = 339. Line (1): 2 phases coexist –
bcc+fluid.

Figure 3. Phase diagram of a Debye system for Z∗ = 600. Line (2): 2 phases coexist – bcc+fcc.

Accordingly, the considered equivalent of the diagram [8] is a set of stripes in the coordinates
lg n–lgT , which is equal to three calculated in [8] phase states of the Yukawa model bcc-fcc-fluid.
As it is seen from the figures 2–5, these sets are different for different Z.

To make it clear, for example, in the case of isochoric cooling it gives:
Z < Z∗

1 fluid;
Z∗

1 < Z < Z∗

2 fluid ⇔ bcc ⇔ fluid;
Z∗

2 < Z < Z∗

3 fluid ⇔ bcc ⇔ fcc ⇔ bcc ⇔ fluid;
Z∗

3 < Z fluid ⇔ bcc ⇔ fcc ⇔ fluid.
It should be emphasized that fluid is always the stable final phase if one decreases temperature

isochorically of equilibrium one-temperature model (+Z,-1) basing on the Yukawa model with
the Debye screening. This is nominally correct even for T = 0(!). And it appears to be a real
artifact of this model that should be examined carefully. But there is nothing strange because
rD decreases if T → 0 (considering the system (+Z,-1)).
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Figure 4. Phase diagram of a Debye system for Z∗ = 810. Line (3): 3 phases coexist –
fluid+bcc+fcc.

Figure 5. Phase diagram of a Debye system for Z∗ = 1000.

3. Density gap of the model (+Z,-1)
By definition there is at least one first derivative discontinuity of thermodynamic potential
speaking about of a first-order phase transition. For example, it may be the derivate of Helmholtz
free energy F (T,N, V ) – density and entropy of coexistent phases. There is one situation when
the first-order transition, melting, corresponds to the gap of only one derivate – entropy. This
is the simple and well known model OCP – a one-component (classic or quantum) system of
mobile charges (ions or electrons) in an incompressible homogeneous neutralizing medium of
opposite sign charges ( [10] and others). The background is rigid in the initial model (like
in [5, 11] we call this model OCP(#)). Variations of volume are not determined. Well known
negativity of formally appointed pressure and compressibility (when Γ ≫ 1) does not mean a loss
of thermodynamic stability. The only first-order phase transition in the system – crystallization
– happens without a volume change and is accompanied only the entropy gap.

A more realistic version OCP(∼) [5, 11] takes into consideration a finite compressibility of
the background, keeping the background itself homogeneous. This compressibility depends,
for example, on a degree of degeneracy of electrons, which form the “passive” background for
OCP(∼) of ions. There are all of three phase transitions in this system: melting, boiling and
sublimation. All of them are accompanied by the finite density gap (see details in [5, 11]).
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The considered in [8] and other papers model with the Yukawa potential and the fixed
screening length rD is short-range interactive. All the phase transitions in this model are
accompanied by the density gap (this relates also to melting). It is known that there is a
density gap in the process of melting in the model of soft spheres (SS – Soft Spheres, the other
title is the model IPL, Inverse Power Low) is bigger, the harder a repulsion is. It grows from
0 for the Coulomb model (#) to ∼ 10% for the model of Hard Spheres (HS). But there is no
correct definition of admissible variations of volume of both the system and its subsystems in
the Yukawa model from [8]. There is also no corresponding thermodynamic response to these
variations (we mean pressure and compressibility). All of this leads to artificial isochoricity of
all considered phase transitions fluid – bcc – fcc and to absence of the phase transition gas-
fluid and gas-crystal. Meanwhile, it is well known that there are the transitions fluid-gas and
crystal-gas in initial prototype of the Yukawa model [8] – asymmetric model of Charged Hard
Spheres (CHS: + Z,-1). Moreover, there are finite gaps of specific volume in phase transitions in
a condensed state (melting and polymorphic transitions). So, there is a question – how can one
estimate values of these gaps considering the one-temperature Yukawa model with the screening
length, which is defined definitely by parameters of macroions subsystem?

It is well-known, that a condition of “truncated” phase equilibrium is (besides a temperature
equality) a condition of specific Helmholtz free energy of coexisting phases when one artificially
imposes a condition of isochoricness, f(T, ρ) = F (T, V,N)/N (ρ = N/V ), (look, for example,
[10]):

f ′(T, ρ′) = f ′′(T, ρ′′). (5)

It should be underlined that the equality of pressures is not obligatory in this truncated
variant of phase equilibrium. Exactly this type of equilibrium has been calculated in the
papers [8] and others. Thus, pressure is not considered in this approach. A general condition of
phase equilibrium is (besides a temperature equality) also a condition of pressure equality and
Gibbs free energy of both phases equality,

g(T, P ) = G(T, P,N)/N = f(T, P ) + p(T, ρ),

g′(T, P ′) = g′′(T, P ′′), p′(T, ρ′) = p′′(T, ρ′′). (6)

A macroions Yukawa system response to a volume variation isn’t determined in [8]. The same
is valid for the thermodynamically equilibrium microion background. Because of these facts
there is no definition of pressure, which has the single meaning in the Yukawa model. If the
correct variant to determine pressure p(T, ρ) has been chosen, a difference of specific volumes of
coexisting phases can be estimated in a simplest way the changing “truncated” (isochoric) variant
of phase transition [8] (5) on the complete isobaric variant of this transition (6). Supposing
pressure and Gibbs specific energies disbalances small, ∆p = p′′ − p′ and ∆g = g′′ − g′, so that
they agree to mentioned above isochoric variant of phase equilibrium [8], and considering for
definiteness that that specific specific volumes of coexisting phases change (isochorically) so that
their changes dν ′ = −dν ′′, we have after taking into account (5)

∆ρ ≈ ∆p/(∂p/∂ρ)T . (7)

It is expected that properties of the model with the Yukawa potential melting are similar to
melting of well-known Soft Spheres model with the potential Φ(r) = 1/rm. It is also expected
that if m → ∞ melting parameters of the Yukawa system approach to melting parameters
in Hard Sphere system. So, the density gap is anticipated to be ∆ρ

ρ ∼ 10% ! (look, for

example, [12]). And if m → 1 melting parameters of the Yukawa system approach to melting

parameters of the model OCP(#) – ∆ρ
ρ ∼ 0 (figure 6).

The density gap is about 3% in the triple point in the Soft Sphere system [13].
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Figure 6. Estimation of the density gap in the model with the potential of the Yukawa form
based on the systems’ analogy with Soft Sphere.

As one needs to get total fluid and solid pressures we analyzed previous results [8,9] and found
out that there is no single-valuedness of a thermodynamic background role exact definition.

P = −
(∂F

∂V

)

T
, (8)

Ptot = Pid + Pex = nkT + nekTe + Pex. (9)

In the figure 7, there are fluid excess pressures as functions of the parameter Γ, which were
plotted in [9, 14]. Notice that all 3 curves are different if κ = 0. Moreover, if κ increases slopes
of the curves from [9] decreases while slopes of the curves from [14] increases.

In this case, there is nothing strange in a following situation. But there are 2 different curves
if one plots fluid excess pressure on the melting curve as a function of the parameter Γ (figure
8)!

It is easy to notice that as Γ on the melting curve increases Ptot decreases and, finally,
becomes negative! This becomes valid for compressibility (∂n/∂P )T . According to [8] for the
(electroneutral) system (+Z,-1) and T = Te

pfluid = 1 + Z + pex,fluid, (10)

psolid = Z + pex,solid, (11)

we have that on the melting curve
as Z = 1000 p < 0 as Γ ≈ 1295, κ ≈ 3, 05;
as Z = 1000 (∂P/∂n)T < 0 as Γ ≈ 967, κ ≈ 2, 76;
as Z = 339 p < 0 as Γ ≈ 590, κ ≈ 2, 28;
as Z = 339 (∂P/∂n)T < 0 as Γ ≈ 435, κ ≈ 1, 97.
Thus, we suppose that there is no single-valuedness of a thermodynamic background role

exact definition. First, background can be supposed incompressible like in [9] but, thus, there
are no volume variations. In this case pressure p = −(∂f/∂n)T is formal quantity and has no
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Figure 7. Fluid excess pressure as a function of the parameter Γ plotted by Hamaguchi et
al. [14], Khrapak S.A. et al. [9] and this dependence for the model OCP [15].

Figure 8. Comparison fluid excess pressures on the melting curve as functions of the parameter
Γ based on [8,9,14] and (as κ = 0) excess pressure as a function of Γ for OCP [15]. (a) is based
on [14] (Khrapak S.A. et al.), (b) is based on [15] (Potekhin et al.), (c) is based on [8, 14]
(Hamaguchi et al.).

physical meaning. Second, medium can be supposed to be compressible like in [8]. But in such
a way a system should collapse if pressure becomes negative and there is no phase immiscibility
if compressibility becomes negative.

The density gap is less than 1% as κ ≤ 2.
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4. On non-congruence of phase transitions of the model CHS (+Z,-1,+1). Galvani
potential
Non-congruent ( or incongruent) phase transition (NCPT) is the most common form of first-order
phase transitions in the equilibrium systems that consist from two or more chemical elements,
e.g. in mixtures or compounds (for example, look [16, 17]). This type of phase transitions
is general and is widely realized in various situations, including exotic forms of nuclear and
quark-hadron transitions fluid-fluid in superdense matter of extreme parameters (for example,
look [18, 19]). One of distinctive properties of non-congruent phase transitions is the fact that
all the interphase boundaries in intensive thermodynamic variables, for example, P (T ) must be
not one-dimentional curves, like in the Van-der-Waals transition gas-fluid or in melting, but
two-dimensional zones for a non-congruent transition.

All the above mentioned also fairs to plasma phase transitions with macroions (dusty,
colloidal, electrolytic and others right up to so-called “pasta plasma” (look, for example,
[20]). The key condition to realize a non-congruent situation of one of phase transitions in
a system (besides “usual” forced-congruent situation, e.g. equilibrium (according to Maxwell’s
thermodynamic relations)) is its two or higher thermodynamic dimension. It means that there
should be two or more “charges”. In the case of chemically reacting plasma it is equal to presence
two or more chemical elements in co-existence phases. A long-range action of Coulomb forces
in Coulomb systems and, as a result of it, the electroneutrality condition in each of co-existing
macroscopic phases lowers per unit the mentioned above thermodynamic dimension of the phase
transition. It means that considering in this paper phase transitions are always congruent in the
more simple (not Coulomb) Yukawa model because a system is one-component.

Transitions in two-component (Coulomb) model CHS (+Z,−1) are also congruent because a
system is one-component in view of the electroneutrality condition. The system (+Z,−1,+1) is
thermodynamically two-dimensional because of extra degree of freedom (free parameter) ratio
of concentrations of microions (+1,−1) (or ions and electrons in complex plasmas).

A specify of this system is in the fact that its non-congruence is explicitly linked with another
important property of interphase surfaces in the Coulomb systems — a presence of a stationary
gap of a middle electrostatic potential in co-existing phases on these interphase boundaries.
This potential is called the Galvani potential ∆ϕ (look [5, 17, 21] and references therein). As
for the model CHS (+Z,−1,+1), the phase equilibrium condition in many-component plasmas
(the Gibbs-Guggenheim condition, look, for example, [18]), is

T ′ = T ′′, P ′ = P ′′, (12)

µ′

z = µ′′

z + Ze∆ϕ, µ′

i = µ′′

i + e∆ϕ, µ′

e = µ′′

e − e∆ϕ. (13)

We underline that pressure and all “local” (usual) chemical potentials of macro- and microions
(µz, µe, µi) are functions from temperature and all concentrations µ = µ(T, nz, ni, ne).

Non-congruence of phase equilibriums in the model (+Z,-1,+1) manifests itself in an
inequality of a connection x ≡ ni/ne in co-existing phases. Here it is an analogue of chemical
“composition” in mixtures. Because of the electroneutrality condition (Znz + ni = ne):

x′ 6= x′′ ⇒ (ni/ne)
′ 6= (ni/ne)

′′. (14)

Correct calculation of parameters of a non-congruent (full) phase transition in a many-
component system is a more complicated issue than calculations of a congruent (partial)
equilibrium in this system (look, for example, [17, 22]). To make a simple estimation of a
sign and a value of hypothetical non-congruence of melting in the model (+Z,-1,+1) it is used
maximum of possible simplifications.

It is assumed that a shift to a non-congruent melting is a small deviation from the isochoric
melting calculated in [8]. It means it can be also assumed that macroions densities in crystal
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and fluid are the same and corresponding to calculated in [8]. We suppose that a little shift
to a non-congruent equilibrium happens only because of an exchange of microions among
phases (relatively equal concentrations ni and ne, which are implied because of the isochoric
conditions [8]). Moreover, it means that results of calculations of free energy of both phases
(look [8]) can be used to estimate a difference of the chemical potentials of macroions nz in
crystal and fluid. And while one calculates these chemical potentials they can differentiate with
respect only to an explicit dependence F (T, nz, rD(T, ni, ne)) from nz and neglect an implicit
dependence in the Debye radius. Thus, because of the first of equations (13) it gives an estimation
of the Galvani potential value:

∆ϕ(T, n, rD) = Z−1{(dF ′(T, n, rD)/dn)T,rD − (dF ′′(T, n, rD)/dn)T,rD}. (15)

The equations (13) and (14) give the value of difference (local) chemical potentials of
microions:

µ′

i − µ′′

i = µ′′

e − µ′

e = Z−1(µ′

z − µ′′

z) = Z−1(µ′

i − µ′′

i )[8] = e∆ϕ. (16)

Isochoric equilibrium is used as a zero approximation. The concentrations of microions nio

and neo of co-existing phases (also both in crystal and fluid) are implied the same (n′

i0 = n′′

i0;
n′

e0 = n′′

e0) in calculations of the isochoric equilibrium. The condition (13) can be realized only
if there is a shift of ni and ne. It is important to make the following conditions (15) valid. It
is taken into account a dominating quasi-ideal dependence chemical potential i,e from ni,e only
in order to make a simple estimation of the stated shift. Small (Coulomb) corrections are also
neglected because of non-ideality:

µi,e(T, ni, ne, n) ≈ kT ln(ni,er
3
i,e). (17)

The equations (16) and (17) give the sought shifts:

n′

i/n
′′

i ≈ exp(e∆ϕ/kT ), n′

e/n
′′

e ≈ exp(−e∆ϕ/kT ). (18)

Finally, we have for the shift of the parameter x ≡ ni/ne during the non-congruent melting
(NCPT) compared to congruent [8], where:

(x′/x′′)NCPT ≈ exp(2e∆ϕ/kT ) = exp(2∆µz/kT ). (19)
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