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Abstract. This paper is devoted to a careful study of two charge interaction in an equilibrium
plasma within the Debye approximation. The effect of external boundary conditions for the
electric field strength and potential on the electrostatic force is studied. The problem is solved
by the method of potential decomposition into Legendre polynomials up to the fifth multipole
term included. It is shown that the effect of attraction of identically charged macroparticles
is explained by the influence of the external boundary. When the size of a calculation cell is
increased the attraction effect disappears and the electrostatic force is well described by the
screened Debye–Hückel potential.

1. Introduction

In paper [1], the electrostatic force between two charged macroparticles in a plasma was
considered using the Maxwell stress tensor. It was shown that within the Poisson-Boltzmann
model two macroparticles with the same charge always repulsed each other in both isothermal
and nonisothermal plasmas. Ignatov in [2] deduced the same result (see also [3–5]). In spite of
this clear conclusion new papers are regularly published with the statement of the attraction
of macroparticles with charges of the same sign in the equilibrium plasma (see, for example,
papers [6–8]). This paper is devoted to a careful study of the electrostatic interaction of two
charged macroparticles in the equilibrium plasma within the Poisson-Boltzmann model using
the Debye-Hückel approximation.

2. Interaction force of two charges within the Poisson-Boltzmann model

In the Poisson-Boltzmann model, the electron and ion density distributions are described by the
Boltzmann law

ne = ne,0 exp

(

eφ

Te

)

, ni = ni,0 exp

(

−eφ

Ti

)

, (1)

and ne,0 = ni,0 ≡ n0 as follows from the quasi-neutrality condition and finiteness of charges q.
For the isothermal case Te = Ti ≡ T , in paper [1] using the Maxwell stress tensor it was obtained

Fz = −
∞
∫

0

{

1
4E

2
s + 4πn0T

[

cosh

(

eφs

T

)

− 1

]}

rzdrz, (2)
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here Fz is the interaction force of two point charges in the equilibrium plasma, z and rz are the
coordinates in the cylindrical frame system with the origin in the center of the first particle and
z-axis directed to the center of the second one, Es and φs are the electric field strength and
potential in the plane z = 1

2Rint, Rint is the interparticle distance.
The minimum of the hyperbolic cosine is equal to 1. Therefore, the expression in the square

brackets and, correspondingly, the expression in braces in Eq. (2) are always positive (or equal
to zero only when the potential and field strength in the symmetry plane of the problem are
zero, which is possible only for the case of zero charges; however, this case is of no interest).
For this reason, Fz < 0 at any distances between the particles; i.e., the same sign charged dust
particles in a plasma with the Boltzmann distributions of the electron and ion number densities
always repulse each other. It is worth noting that a similar expression (taking into account the
neutralizing background being equal to zero) for this force was derived by a different method
in [2]. We also note that the absence of attraction between two charged plates in the equilibrium
plasma in one-dimensional plane geometry was proved by Derjaguin [9].

For a nonisothermal plasma, expanding exponentials into the Taylor series Filippov et al. [1]
obtained

Fz = −1

4

∞
∫

0

{

E2
s + 4πn0 (eφs)

2

(

1

Ti
+

1

Te

)

− 8π

3!
n0 (eφs)

3

(

1

T 2
i

− 1

T 2
e

)

+ ...

}

rzdrz. (3)

It is seen that, for Te ≥ Ti and the negative potential φs (i.e., for negatively charged
macroparticles), the terms of odd φs powers, as well as the terms of even powers, are positive.
For this reason, identically charged dust particles in nonisothermal plasma also repulse each
other.

The final analytical expression for the force can be derived under the condition |φs/T | ≪ 1.
In this case, it follows from Eqs. (2) and (3) that

Fz = −1

4

∞
∫

0

(

E2
s + k2Dφ

2
s

)

rzdrz, (4)

where kD is the inverse Debye radius: k2D = 4πe2n0

(

T−1
i + T−1

e

)

. Further, we assume that the
macroparticles are point-like. Integrating Eq. (4) with Debye potential, it was derived in [1]

Fz = −e2q2

R2
int

(1 + kDRint) e
−kDRint . (5)

Substituting this expression into the relation Fz = −∇U and integrating the latter by taking into
account that the interaction energy at Rint = ∞ vanishes, authors [1] arrived at the expression

U =
e2q2

Rint
e−kDRint (6)

for the electrostatic interaction energy of two macroparticles. According to Eqs. (5) and (6),
the force and interaction potential of two macroparticles are described by the Yukawa potential
and the identically charged macroparticles repulse each other.

3. Helmholtz free energy of the two macroparticles in the canonical ensemble

The authors of [15–18] draw a wrong conclusion on the electrostatic attraction between two
macroparticles with charges of the same sign, because they use the internal energy to determine
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the force. It is known [10] that the internal energy is the thermodynamic potential in terms of
the entropy S and volume V , whereas the Helmholtz free energy is the thermodynamic potential
in terms of the temperature T and volume V in the canonical ensemble. For this reason, the
Helmholtz free energy should be used to determine the force for isothermal processes [10]. The
Helmholtz free energy of the system of two macroparticles in an infinite plasma was defined
in [1] using the internal energy part depending on the distance between macroparticles obtained
in [15–20] in the form

E (Rint) =
e2q1q2
Rint

(

1− 1
2kDRint

)

e−kDRint , (7)

where q1, q2 are the charges of the macroparticles. Only the screening constant kD = const·T−1/2

is a function of temperature in Eq. (7). Using the thermodynamic identity [10]

F = T

∞
∫

T

( E
T 2

)

V

dT, (8)

from Eq. (7) the authors of [1] derived

F =
e2q1q2
Rint

e−kdRint . (9)

For the case of identical charges, this expression coincides with Eq. (6); hence, the interaction
between two macroparticles in the equilibrium plasma is potential. Moreover, the final conclusion
is that the electrostatic attraction between two identically charged particles is absent in the
Poisson-Boltzmann model under any conditions.

4. Entropy of the system of two charged macroparticles in equilibrium plasma

To finally clarify the question let us calculate the electron and ion entropy in the considered
system that is determined for the ideal gas of electrons and ions by the following expression [10]:

S = Se + Si = −
∑

σ=e,i

∫

nσ(r,p) [lnnσ (r,p)− 1]
drdp

(2π~)3
, (10)

where nσ(r,p) are the electron and ion distribution functions which are expressed in the
equilibrium plasma as

nσ(r,p) = e(µσ−εσ)/T , (11)

µσ is the chemical potential, εσ is the total energy:

εσ =
p2

2mσ
+ eσφ(r).

The chemical potential can be found from the normalization condition

Nσ =

∫

nσ(r,p)
drdp

(2π~)3
, (12)

where Nσ is the total number of particles of the plasma σ-component. So we have

µσ = T ln

(

ϑ0σNσ
∫

e−eσφ/Tdr

)

, (13)
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where ϑ0σ = (2π~2/mσT )
3/2. For non-disturbed plasma (φ = 0) we have:

S0σ = −N
[

ln (ϑ0σn0)− 5
2

]

. (14)

For the entropy addition connected with the electrostatic interaction, we now obtain:

∆Sσ = S − S0σ = Nσ

[

ln

(

1

V

∫

e−eσφ/Tdr

)

+

∫ eσφ
T e−eσφ/Tdr
∫

e−eσφ/T dr

]

. (15)

where V is the system volume. It is well known that when the condition |eφ1,2/T | ≪ 1 is fulfilled
the screened potential is described by the Debye-Hückel solution [11]

φi =
eqi

|r− ri|
e−kD|r−ri|, (16)

where ri is the position of the i-th charged macroparticle, φ1 and φ2 are the potential
distributions of the bulk charges connected with the first and second macroparticles (including
their charges), respectively. Let us pay particular attention to the fact that the solution (16)
was found within the linear approximation of ratios eφ1,2/T , therefore, in the decomposition of

e−eσφ/T = e−eσφ1/T e−eσφ2/T in (15) we should only keep the linear term.
In this case we get from (15):

∆Sσ =
Nσ

V

∫
(

−eσφ1

T
− eσφ2

T
+

e2φ1φ2

T 2

)

dr+
Nσ

V

(

eσ
T

∫

φdr− e2

T 2

∫

φ2dr

)

≡ e2Nσ

V T 2

∫

(

φ1φ2 − φ2
)

dr.

(17)

From (17) the depending on the interparticle distance part of the entropy addition is as follows:

∆Sσ (Rint) = −e2n0

T 2

∫

φ1φ2dr = −1
4

kD
T

e−kDRint . (18)

Finally, for the addition to the entropy we obtain

∆S (Rint) = ∆Se (Rint) + ∆Si (Rint) = −1
2

kD
T

e−kDRint . (19)

Now after the substitution of Eqs. (7) and (19) into the thermodynamical equality [10]

F = E − TS, (20)

we get the following expression

U =
e2q1q2
Rint

e−kDRint (21)

that exactly coincides with Eq. (6) in the case of two equal charges. This shows that the minimum
in the dependence of the electrostatic energy for the system of two charged macroparticles in
plasma on the distance between them is formed owing to the change in the system entropy, that
is, due to the energy exchange with the thermostat.
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5. Influence of the external boundary upon interaction of two macroparticles

In papers [21,22] the energy of the electric field of two charged macroparticles in non-equlibrium
plasma was calculated and the minimum in the dependence of this energy on the interparticle
distance was found. On the basis of this observation a mistaken conclusion was made about the
attraction of similarly charged macroparticles. In paper [20] the electric field energy and using
the Maxwell tension tensor the electrostatic interaction force was calculated for two similarly
charged macroparticles in the non-equilibrium plasma created by an external gas ionization
source. It was shown that the energy of the electric field had the minimum as a function of the
interparticle distance, there being no attraction force between similarly charged macroparticles,
in full compliance with the previous section.

In paper [8] the effect of attraction of similarly charged macroparticles was also revealed,
but in that case the range of distances where the effect was observed was much less than the
Debye radius. In that range the interaction of two particles is close to the Coulomb one and no
attraction effect should be observed if the surface charge polarization (for example, see [23–26])
which was not taken into account in [8] is not considered. In our opinion the attraction effect
in [8] appeared owing to the wrong choice of the arbitrary constant of the potential and to the
use of the quasineutrality condition in the approximate form.

In [8] the authors state that in [1, 3] the absence of attraction was only proved for non-
quasineutral systems. The incorrectness of this statement can easily be seen by integrating the
bulk charge in the spherical coordinate system with the pole in the center of the considered
particle. For a bulk charge connected with the i-th particle we get using (16):

Qi = −
∞
∫

0

π
∫

0

2π
∫

0

k2D
4πe

φir
2
i drdθidϕi = −

∞
∫

0

qi
ri
e−kDrik2Dr

2
i dri = −qi

∞
∫

0

e−r̃i r̃idr̃i = −qi, (22)

that is, each charge system is quasineutral.
In paper [7] the interaction of two macroparticles was considered with approximate account

of polarization effects of the surface charge, the attraction appearing at distances compared with
the Debye screening radius RD . Unfortunately, the size of particle was not given in paper [7],
and the variable that at first denoted the radius of macroparticles meant the dimensionless
distance in the section where the results were discussed. If the size of macroparticles was less
than the Debye radius the polarization effects could not lead to the attraction effects at distances
about RD (see [23–26]). Baimbetov et al. in [7] state that in [1] the dependence of the static
longitudinal dielectric function ǫL (k, 0) on the wavevector k was neglected. In reality in [1] the
interaction was considered without using the plasma dielectric function. If the interaction of
two macroparticles is considered with using the ǫL (k, 0) in the Debye approximation [27]

ǫL (k, 0) = 1 +
k2D
k2

, (23)

one obtains for the Fourier transform of the interaction potential

U (k) =
4πe2q1q2

k2
1

ǫL (k, 0)
=

4πe2q1q2
k2 + k2D

. (24)

Here 4πe2q1q2/k
2 is the Fourier transform of the Coulomb potential for macroparticles with the

charges q1 and q2 in elementary charges. After the inverse transformation of Eq. (24) we obtain
Eq. (21) for the interaction potential.

In papers [28, 29] the electrostatic interaction force of two macroparticles was calculated on
the basis of numerical simulation with the use of the Maxwell tension tensor and the attraction of
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two similarly charged macroparticles was found. The calculation was performed for the finite cell
with an external boundary. To reveal the influence of the external boundary let us consider the
interaction of two charged macroparticles of a small radius kDa1 ≪ 1, kDa2 ≪ 1 in equilibrium
plasma. Here a1 and a2 are the radius of the macroparticles, kD =

√

4πe2 (ne0 + ni0) /T is the
Debye screening constant, T is the temperature of electrons and ions in energetic units, e is the
absolute value of the electron charge, ne0 and ni0 are the concentrations of electrons and ions in
the non-disturbed plasma.The geometry of the interaction in the spherical coordinate system is
given in figure 1. The self-consistent potential of macroparticles and plasma will be determined
on the basis of the linearized Poisson-Boltzmann equation [11]:

△φ− k2Dφ = 4πe (ne0 − ni0) , (25)

Owing to the linearity of the considered problem, the total potential can be represented as a
superposition of potentials for systems of charges connected with each macroparticle:

φ (r, θ) = φ1 (r1, θ1) + φ2 (r2, θ2) . (26)

Let us find the solution in the finite cell whose external boundary is the sphere with the center
in the point O and with the radius Rb. Here we will not take into account the effects connected
with the size of particles, therefore, the limit transition a1 → 0, a2 → 0 is implied everywhere
below. Let us impose the following boundary conditions upon the system:

∂φ1 (r1, θ1)

∂r1

∣

∣

∣

∣

r1=a1

= −eq1
a21

,
∂φ2 (r2, θ2)

∂r2

∣

∣

∣

∣

r2=a2

= −eq2
a22

; (27)

φ (r, θ)|r=Rb
= 0,

∂φ (r, θ)

∂r

∣

∣

∣

∣

r=Rb

= 0. (28)

The boundary conditions (28) were used in [29].

Figure 1. Geometry of the electrostatic
interaction of two charged macroparticles.
ri, θi (i = 1, 2) are the radius and polar
angle in the spherical frame system with
the pole in the center of i-th macroparticle
and with the axe directed to the center of
the other macroparticle, Rint = 2p is the
interparticle distance, q1, q2 are the charges
of the macroparticles.

Here we should discuss the conditions at the external boundary. The second condition (28)
provides the quasineutrality in the considered cell, and the first condition results from the fact
that in the Poisson-Boltzmann model the distribution of electrons and ions is according to the
Boltzmann law:

ne = ne0e
eφ/Te , ni = ni0e

−eφ/Ti . (29)

Therefore, the arbitrary constant of the potential had already been chosen: it was φ = 0 where
ne = ne0 and ni = ni0. In a case of the infinite calculation cell there are no problems with
choosing the arbitrary constant of the potential, since in this case ne0 = ni0. In case of the
finite cell we have ne0 6= ni0 (for example, if the external boundary is rather close, then the
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condition ne0 ≪ ni0 will be satisfied) and after the linearization of the Boltzmann distribution
in the Poisson equation there will be a constant term given in (1). The arbitrary constant of
the potential should be determined by integrating the linearized distributions of electrons and
ions and using the quasineutrality condition:

2π

Rb
∫

0

1
∫

−1

[

ne0 − ni0 +
k2D
4πe

φ (r, µ)

]

r2drdµ = q1 + q2. (30)

In a case of the finite cell the general solution of Eq. (25) for the distribution of the potentials
φ1 (r1, θ1) and φ2 (r2, θ2) with the axial symmetry taken into account is as follows [12]:

φ1 (r1, θ1) =
∞
∑

n=0

[

An

Kn+1/2 (r̃1)√
r̃1

+Bn

In+1/2 (r̃1)√
r̃1

]

Pn (cos θ1) +G1, (31)

φ2 (r2, θ2) =

∞
∑

n=0

[

Cn

Kn+1/2 (r̃2)√
r̃2

+Dn

In+1/2 (r̃2)√
r̃2

]

Pn (cos θ2) +G2, (32)

where r̃i = kDri, i = 1, 2; In+1/2, Kn+1/2 are the modified Bessel functions of the first kind and
of the third kind respectively; Pn are the Legendre polynomials, r1, r2 are the lengths of the
vectors r1 and r2, respectively, An, Bn, Cn, Dn, n = 0, 1, . . . ,∞ are the coefficients which are
determined by the boundary conditions (27,28), and the coefficients G1 and G2 are necessary to
compensate the constant term in Eq. (25).

For small argument the modified Bessel functions are determined by the expressions [13]:

Kn+1/2 (z) =

√

π

2z

(2n− 1)!!

zn
, In+1/2 (z) =

√

2z

π

zn

(2n+ 1)!!
, (33)

where (2n− 1)!! = 1 · 3 · . . . · (2n− 1) (note that (2n− 1)!! = 1 for n = 0). Therefore, for low
z ≪ 1

d

dz

[

In+1/2 (z)√
z

]

=

√

2

π

nzn−1

(2n + 1)!!
,

d

dz

[

Kn+1/2 (z)√
z

]

= −
√

π

2

(n+ 1) (2n− 1)!!

zn+2
. (34)

According to boundary conditions (27) for small ri the field should coincide with the field of the
point charge Ei = eqi/r

2
i , therefore, all An and Cn for all n ≥ 1 should be equal to zero and the

coefficients for n = 0 are determined by the relations:

A0 =
√

2
π eq1kD, C0 =

√

2
π eq2kD. (35)

It follows from (34) that

lim
ai→0

d

dri

In+1/2 (r̃i)√
r̃i

∣

∣

∣

∣

ri=ai

= 0 (36)

for all n ≥ 0, therefore, the coefficients Bn, Dn are only determined by the external boundary
conditions (28). It is seen from (34) that when ri → 0 the potential contains the additional
term equal to B0

√

π/2 and D0

√

π/2 which should be subtracted from final expressions for the
coefficients.

It follows from Eq. (36) and from boundary conditions (27) that the electric field of bulk
charges connected with the i-th microparticle is zero in the location of this particle:

lim
ai→0

Ei,̺i (ri = ai) = − lim
ai→0

(

dφi

dri
+

eqi
r2i

)
∣

∣

∣

∣

r=ai

= 0. (37)
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Therefore, the i-th particle experiences only the force from charges induced by the other
microparticle (j = 3− i, R = 2p):

Fi = eqiEj
∣

∣

∣

∣

rj=Rint

θj=0

= −eqi
dφj

drj

∣

∣

∣

∣rj=Rint

θj=0

. (38)

To use the boundary conditions (28) we have to reexpand solutions (31) and (32) by the
Legendre polynomials with the pole in the point O. For this purpose let us use the Gegenbauer
addition theorems [13] and decomposition theorem for the products r̃ni Pn (µi) (µi = cos θi,
i = 1, 2) [14] which are given in Appendix A. Finally, we get the following expression for the
distribution of the potential of the first macroparticle in the spherical frame with the pole in
the point O:

φ1 (r, µ) = A0

√

π
2

∞
∑

m=0

(−1)m (2m+ 1)
Km+1/2 (u)

u1/2
Im+1/2 (v)

v1/2
Pm (µ)

+
√

π
2

∞
∑

n=0

Bn (2n− 1)!!

{

∞
∑

m=0

n
∑

k=0

n! (2n+ 2m+ 1)

k! (n− k)!

×
In+m+1/2 (r̃)

r̃1/2
In+m+1/2 (p̃)

p̃1/2
1

p̃kr̃n−k
Pk (µ)C

n+1/2
m (µ)

}

.

(39)

Here µ = cos θ, p̃ = kDp, C
n+1/2
m are the Gegenbauer polynomials [13], u = max (r̃, p̃),

v = min (r̃, p̃). Similarly, for the second macroparticle:

φ2 (r, µ) = C0

√

π
2

∞
∑

m=0

(2m+ 1)
Km+1/2 (u)

u1/2
Im+1/2 (v)

v1/2
Pm (µ)

+
√

π
2

∞
∑

n=0

Dn (2n− 1)!!

{

∞
∑

m=0

n
∑

k=0

(−1)m+k n! (2n+ 2m+ 1)

k! (n− k)!

×
In+m+1/2 (r̃)

r̃1/2
In+m+1/2 (p̃)

p̃1/2
1

p̃kr̃n−k
Pk (µ)C

n+1/2
m (µ)

}

.

(40)

The products of the Legendre and Gegenbauer polynomials can be expanded into the
Legendre polynomials. As a result, we get the following potential distributions:

φ1 (r, µ) =

nmax
∑

m=0

[

A0a0m (r̃) +

nmax
∑

k=0

Bkbkm (r̃)

]

Pm (µ) , (41)

φ2 (r, µ) =

nmax
∑

m=0

(−1)m
[

C0a0m (r̃) +

nmax
∑

k=0

Dkbkm (r̃)

]

Pm (µ) ; (42)

where a0m, bkm are the expansion coefficients depending on coordinates of the considered point
and interparticle distance. The explicit expressions of the coefficients for m = 0, 1, . . . , 5 and
k = 0, 1, . . . , 5 are given in the Appendix B.

The external boundary conditions for the electric field and the potential (28) after a little
algebra yield two independent equation systems for the variables xk = Bk+Dk and yk = Bk−Dk,
k = 0, 1, . . . , nmax (nmax is an odd number):
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nmax
∑

k=0

bkmxk = −a0m (A0 + C0) ,

nmax
∑

k=0

βkmxk = −α0m (A0 + C0) ,

m = 0, 2, . . . , nmax − 1; (43)

nmax
∑

k=0

bkmyk = −a0m (A0 − C0) ,

nmax
∑

k=0

βkmyk = −α0m (A0 − C0) ,

m = 1, 3, . . . , nmax; (44)

where

a0m = a0m (r̃)|r̃=R̃b
, bkm = bkm (r̃)|r̃=R̃b

, α0m =
∂a0m
∂r̃

∣

∣

∣

∣

r̃=R̃b

, βkm =
∂bkm
∂r̃

∣

∣

∣

∣

r̃=R̃b

.

The coefficients Bn, Dn from the solution of the systems (43) and 44) are easily found

Bn = 1
2 (xn + yn) , Dn = 1

2 (xn − yn) .

Now we find the force of two microparticle interaction from (41) and (42)

F1 = −eq1kD

nmax
∑

m=0

[

C0α0m (p̃) +

nmax
∑

k=0

Dkβkm (p̃)

]

, (45)

F2 = −eq2kD

nmax
∑

m=0

[

A0α0m (p̃) +

nmax
∑

k=0

Bkβkm (p̃)

]

. (46)

Figures 2 and 3 show the force dependencies on interparticle distance for two radii of the
external boundary sphere: Rb = 5/kD and Rb = 10/kD , calculated at nmax = 5 for two identical
charges. It is seen that taking account of terms up to nmax = 5 provides adequate accuracy of
the force definition up to Rint = Rb. The contribution of the multipole term nmax = 5 becomes
further more sufficient and it is necessary to take into account the higher multipole moments.
Figure 2 shows the attraction of two like charged macroparticles at Rint & 4k−1

D . Figure 3 shows
that this is the external boundary effect, since it disappears with double-sized computational
cell, and the force is well described by the screened Debye potential.

Conclusion

This article shows that the attraction between like-charged microparticles in the equilibrium
plasma within the Poisson-Boltzmann linearized theory applied to the finite size computation
cell appears due to external boundary conditions. In the case of infinite cell all coefficients Bn,
Dn n = 0, 1, . . . ,∞ become zero and the potential distribution for each macroparticle according
to Eqs. (31), (32) and (35) is described by the expressions:

φ1 (ri, θi) =
√

2
π eqikD

K1/2 (r̃i)√
r̃i

, i = 1, 2. (47)
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Figure 2. The interaction force of two
point charges as a function of interparticle
distance for kDRb = 5 and q1 = q2. Curve
1 is the total force, 2 is the Debye force
connected with A0, 3-8 are the partial
forces due to multipole terms with B0−B5.

Figure 3. The interaction force of two
point charges as a function of interparticle
distance for kDRb = 5 and 10. The solid
line corresponds to the Debye force, the
dash line to the total force for kDRb = 5,
symbols ⊙ to the total force for kDRb = 10.

Substituting the explicit expression for the Bessel function K1/2 [13], from (47) we obtain:

φi (ri, θi) =
eqi
ri

e−kDri , i = 1, 2. (48)

From (38) and (48) we get

F1 = F2 =
e2q1q2
R2

int

(1 + kDRint) e
−kDRint . (49)

So the attraction between two like-charged particles is clearly seen from Eq. (49) to be absent
in the case of infinite cell.
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Appendix A. Addition theorems

Let us introduce the following notations: (2n− 1)!! = 1 · 3 · . . . · (2n− 1), µ = cos θ, µ1 = cos θ1,
µ2 = cos θ2, r̃1 = kDr1, r̃2 = kDr2, p̃ = kDp, u = max (r̃, p̃), v = min (r̃, p̃). The Gegenbauer
addition theorems ( [13], p. 365) for angle geometry shown in figure 1 are as follows:

In+1/2 (r̃1)

r̃1
n+1/2

= (2n− 1)!!
√

π
2

∞
∑

m=0

(2n+ 2m+ 1)
In+m+1/2 (r̃)

r̃n+1/2

In+m+1/2 (p̃)

p̃n+1/2
Cn+1/2
m (µ) , (A.1)

where C
n+1/2
m are Gegenbauer polynomials [13],

K1/2 (r̃1)

r̃1
1/2

=
√

π
2

∞
∑

m=0

(−1)m (2m+ 1)
Km+1/2 (u)

u1/2
Im+1/2 (v)

v1/2
Pm (µ) ; (A.2)
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In+1/2 (r̃2)

r̃2
n+1/2

= (2n− 1)!!
√

π
2

×
∞
∑

m=0

(−1)m (2n+ 2m+ 1)
In+m+1/2 (r̃)

r̃n+1/2

In+m+1/2 (p̃)

p̃n+1/2
Cn+1/2
m (µ) , (A.3)

K1/2 (r̃2)

r̃2
1/2

=
√

π
2

∞
∑

m=0

(2m+ 1)
Km+1/2 (u)

u1/2
Im+1/2 (v)

v1/2
Pm (µ) . (A.4)

The addition formulas for vectors and angles in figure 1 are as follows [14]:

r̃n1Pn (µ1) =
n
∑

k=0

n!

k! (n− k)!
r̃kp̃n−kPk (µ) , (A.5)

r̃n2Pn (µ2) =

n
∑

k=0

(−1)k
n!

k! (n− k)!
r̃kp̃n−kPk (µ) . (A.6)

Appendix B. The coefficients of potential and electric field expansion in terms of

Legendre polynomials with the pole at the point O
For convenience let us introduce the following functions:

Φm+1/2 (r̃, p̃) =
√

1
2π (2m+ 1)

Km+1/2 (r̃)

r̃1/2
Im+1/2 (p̃)

p̃1/2
,

Ψm+1/2 (r̃, p̃) =
√

1
2π (2m+ 1)

Im+1/2 (r̃)

r̃1/2
Im+1/2 (p̃)

p̃1/2
.

(B.1)

Then the coefficients of potential expansion in terms of Legendre polynomials with the pole at
the point O take the form:

a0m (r̃) = (−1)mΦm+1/2, b0m (r̃) = Ψm+1/2 − δm0

√

π/2, m = 0, 1, . . . , nmax; (B.2)

b10 (r̃) =
Ψ3/2

r̃
+

Ψ5/2

p̃
+

Ψ7/2

r̃
+

Ψ9/2

p̃
+

Ψ11/2

r̃
,

b11 (r̃) =
Ψ3/2

p̃
+

3Ψ5/2

r̃
+

3Ψ7/2

p̃
+

3Ψ9/2

r̃
+

3Ψ11/2

p̃
,

b12 (r̃) =
2Ψ5/2

p̃
+

5Ψ7/2

r̃
+

5Ψ9/2

p̃
+

5Ψ11/2

r̃
, b13 (r̃) =

3Ψ7/2

p̃
+

7Ψ9/2

r̃
+

7Ψ11/2

p̃
,

b14 (r̃) =
4Ψ9/2

p̃
+

9Ψ11/2

r̃
, b15 (r̃) =

5Ψ11/2

p̃
;

(B.3)

b20 (r̃) =
3Ψ5/2

r̃2
+

10Ψ7/2

p̃r̃
+

10Ψ9/2

r̃2
+

7Ψ9/2

p̃2
+

28Ψ11/2

p̃r̃
,

b21 (r̃) =
6Ψ5/2

p̃r̃
+

15Ψ7/2

r̃2
+

6Ψ7/2

p̃2
+

48Ψ9/2

p̃r̃
+

42Ψ11/2

r̃2
+

33Ψ11/2

p̃2

b22 (r̃) =
3Ψ5/2

p̃2
+

20Ψ7/2

p̃r̃
+

35Ψ9/2

r̃2
+

20Ψ9/2

p̃2
+

110Ψ11/2

p̃r̃
,

b23 (r̃) =
9Ψ7/2

p̃2
+

42Ψ9/2

p̃r̃
+

63Ψ11/2

r̃2
+

42Ψ11/2

p̃2
,

b24 (r̃) =
18Ψ9/2

p̃2
+

24Ψ11/2

p̃r̃
, b25 (r̃) =

30Ψ11/2

p̃2
;

(B.4)
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b30 (r̃) =
15Ψ7/2

r̃3
+

105Ψ9/2

p̃r̃2
+

105Ψ11/2

r̃3
+

189Ψ11/2

p̃2r̃
,

b31 (r̃) =
45Ψ7/2

p̃r̃2
+

105Ψ9/2

r̃3
+

126Ψ9/2

p̃2r̃
+

693Ψ11/2

p̃r̃2
+

81Ψ11/2

p̃3
,

b32 (r̃) =
45Ψ7/2

p̃2r̃
+

210Ψ9/2

p̃r̃2
+

45Ψ9/2

p̃3
+

315Ψ11/2

r̃3
+

585Ψ11/2

p̃2r̃
,

b33 (r̃) =
15Ψ7/2

p̃3
+

189Ψ9/2

p̃2r
+

567Ψ11/2

p̃r2
+

189Ψ11/2

p̃3
,

b34 (r̃) =
60Ψ9/2

p̃3
+

486Ψ11/2

p̃2r
, b35 (r̃) =

150Ψ11/2

p̃3
;

(B.5)

b40 (r̃) =
105Ψ9/2

r̃4
+

1260Ψ11/2

p̃r̃3
, b41 (r̃) =

420Ψ9/2

p̃r3
+

945Ψ11/2

r4
+

2268Ψ11/2

p̃2r2
,

b42 (r̃) =
630Ψ9/2

p̃2r2
+

2520Ψ11/2

p̃r3
+

1620Ψ11/2

p̃3r̃
,

b43 (r̃) =
420Ψ9/2

p̃3r̃
+

3402Ψ11/2

p̃2r2
+

420Ψ11/2

p̃4
,

b44 (r̃) =
105Ψ9/2

p̃4
+

2160Ψ11/2

p̃3R̃
, b45 (r̃) =

525Ψ11/2

p̃4
;

(B.6)

b50 (r̃) =
945Ψ11/2

r5
, b51 (r̃) =

4725Ψ11/2

p̃r4
, b52 (r̃) =

9450Ψ11/2

p̃2r3
,

b53 (r̃) =
9450Ψ11/2

p̃3r2
, b54 (r̃) =

4725Ψ11/2

p̃4r̃
, b55 (r̃) =

945Ψ11/2

p̃5
.

(B.7)

The coefficients α0m and βkm can be easily calculated from the expressions for a0m and bkm
using the follow formulae:

∂

∂r̃

(

Φm+1/2

r̃k

)

= −
Φ1
m+1/2

r̃k
+

(m− k) Φm+1/2

r̃k+1

∂

∂r̃

(

Ψm+1/2

r̃k

)

=
Ψ1

m+1/2

r̃k
+

(m− k)Ψm+1/2

r̃k+1

(B.8)

where we introduce the new functions:

Φ1
m+1/2 (r̃, p̃) =

√

1
2π (2m+ 1)

Km+3/2 (r̃)

r̃1/2
Im+1/2 (p̃)

p̃1/2
,

Ψ1
m+1/2 (r̃, p̃) =

√

1
2π (2m+ 1)

Im+3/2 (r̃)

r̃1/2
Im+1/2 (p̃)

p̃1/2
.

(B.9)
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