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Abstract. The specific features of the combustion waves propagating through the channels
filled with chemically active gaseous mixture and non-uniformly suspended micro particles are
studied numerically. It is shown that the heat radiated by the hot products, absorbed by the
micro particles and then transferred to the environmental fresh mixture can be the source of
new ignition kernels in the regions of particles’ clusters. Herewith the spatial distribution of
the particles determines the features of combustion regimes arising in these kernels. One can
highlight the multi-kernel ignition in the polydisperse mixtures and ignition of the combustion
regimes with shocks and detonation formation in the mixtures with pronounced gradients of
microparticles concentration.

1. Introduction

The contemporary problems of heterogeneous (or two-phase) combustion and explosion arise first
in association with assessments of fire and explosion safety of a wide class of industrial objects
(coalmines, chemical industry plants, nuclear plants). In case of gaseous combustible mixtures
for today such problems, become traditional with enough clear understanding of the leading
factors defining ignition and combustion evolution. The situation changes, becoming more
complicated when studying the heterogeneous mixtures comprising inert or chemically active
microparticles. Further, we will consider only mixtures with suspended inert microparticles.
It is obvious that in general case the suspended inert microparticles would reduce intensity
of all the combustion phases beginning from the ignition and until the detonation formation,
even causing the quenching of the combustion. On the other hand, the particles ahead of the
propagating flame front absorb the radiant heat emitted from the hot combustion products and
then transfer it to the environmental fresh mixture. Such a mechanism of mixture preheating
promotes combustion intensification. Meanwhile the role of radiant heat transfer is one of the
less studied aspects of heterogeneous combustion.

One knows that the gas at normal density is transparent for the radiant heat (the free
path length of the radiation is about hundreds of meters in order of magnitude). On the
other hand, the presence of the absorbing particles reduces drastically the radiation free path
length. Qualitatively the competition between mentioned above factors of flow deceleration and
radiant mixture preheating was studied in analytical works [1,2] and references within. Based
on simplified models the authors studied the combustion of the reacting gas densely seeded
with small particles. Recently in [3] we studied numerically the scenarios of flame propagation
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through hydrogen-oxygen mixture seeded with microparticles. It was shown that in case of
mixture uniformly seeded with microparticles the radiant preheating could not cause more than
10 percent increase of the burning velocity. Otherwise, in case of non-uniformly suspended
microparticles the preheating of the distant particles cloud could result in a formation of new
ignition kernels changing sufficiently the combustion pattern.

The aim of the present paper was to study in details the role of absorbing radiant heat in
a formation of autoignition kernels far ahead of the propagating flame front. We considered
problems of autoignition in monodisperse and bidisperse mixtures with spatially non-uniform
distribution of the particles.

2. Problem setup

We consider a planar one-dimensional flow generated due to the flame propagation through the
channel from its closed end (the left bound of the computational domain). At the initial time
instant the channel is filled with stoichiometric hydrogen-oxygen mixture at normal conditions
(po = 1.0 atm and T = 300 K), the microparticles of size d, = 1.5 um are distributed in
a way that in the region of primal ignition their concentration is small (close to zero) while
at the distance of Ly from the ignition zone the concentration rises up to the finite value
N, =6 x 107 cm™3. Schematically the problem setup is presented in figure 1.
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Figure 1. Schematic representation of the problem setup in the coordinates referred to the
particles cloud margin. 1—combustion products region, 2—the gap between the flame front and
the cloud margin, 3—heating region.

Dynamics of the chemically active gaseous mixture is described by the Navier-Stokes
equations for viscous compressible medium including thermal conductivity, multicomponent
diffusivity, energy and momentum exchange with suspended microparticles and energy release
inside the reaction zone. The system of equations has a standard form, presented e.g.
in [4,5]. Coefficients of viscosity, thermal conduction and diffusivity for gaseous phase are
calculated according to the relations from kinetic theory for multicomponent gaseous mixtures
[6]. Equations of state for fresh combustible mixture and combustion products are calculated
using the interpolation of NASA tables [7]. The system of gasdynamics equations is solved
using the euler-lagrange algorithm [8] modified and approved in [4,5] and our previous papers.
To reproduce features of chemical reaction of combustion we implemented the reduced kinetic
mechanism for hydrogen combustion from [6]. The stiff system of reaction kinetics differential
equations were solved using the Gear method from the standard mathematical library SLATEC.
The phase of suspended microparticles is modeled as a continuum [9] that allows us to use
gasdynamic-like equations to determine the dynamics of the particles
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where N,—particles number density, u,—particles velocity, T),—particles temperature, r,—
particle radius, cpj,—specific heat capacity of the particles material, ppo density of the particles
material.

The interaction of the two phases and momentum exchange are implemented in the energy
and momentum equations in a form of a Stokes force term

6rr
F= Tt ) ‘

with characteristic relaxation time calculated as
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where m,,—particle mass, y—molecular dynamical viscosity of the gas and u,—gas mass velocity.

The thermal exchange is described by the empirical law expressing the thermal flow via the
Nusselt number [10]

3kNu
Q= N (g, ) ;
gp 22¢h 0 g P (6)
where T;;—gas temperature, x—gas thermal conductivity. The characteristic time of inter-phase
heat exchange is calculated as
2r2Cp pPp0
p PP
Q= —"F"5——. 7
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The momentum and heat exchange between phases should be also implemented in the
equations for gaseous phase. The momentum balance equation should be supplemented with
term —p, Fs;, the energy equation should be supplemented with terms —ppu,Fs¢ — ppeppQgps
where p, = m,N,—mass density of the disperse phase.

The last term in equation 3 determines the radiant heat absorption by the particles. g.qq is a
radiant heat flux, 40T1f‘ is a flux emitted from the particle surface, c—Stefan—Boltzmann constant.
Radiation transfer is calculated in the diffusion approximation that adequately describes the
features of the radiation transfer through heterogeneous medium, its absorption on the particles
surface and reradiation from their surface. The diffusive equation for radiant flux g,.q is

d Qrad 3 4
E(L dr ) = _E(4UTp - QTad)’ (8)

where L—free path length of radiation, calculated as L = (WTIQ)NP)_l, where r, and N, are
particles radius and concentration correspondingly.

In the poly-disperse mixtures containing the particles of different sizes comparable with the
wavelength of the transferred radiation the radiation transfer is described in a multi-group
approximation. The particles of different sizes absorb only the part of the spectrum with
wavelengths shorter than the characteristic length scale of the absorption (particle diameter).
In such a case in a mixture containing particles of sizes rp; (rpiy1 > rpi) one can distinguish
groups corresponding to the ranges of wave lengths AX; = {21, ;-1 < A < 2rp;} (1N is a radius
of a larger particle, ry,; is a radius of a smaller particle, 7o = 0). The equation 8 should be
replaced by the system of N equations for partial radiant fluxes g,qq; absorbing only in the
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range of wave lengths A; = {0 < A < 2r,,;}. Further, in calculations for bidisperse mixtures we
will use two-group approximation:

1

d 4rad,2 _ 3 T'p2 1/ + —3

[ _) = 7 rpp C )\,pd)\ Io Qrad,2, (9)
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where the local radiation path length is calculated taking into account the presence of the
particles of two types limiting it with the smallest value of L;—L = L1Lo/(L1 + Lo).
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Figure 2. Temperature (solid lines) and pressure (dashed lines) profiles at different time instant
corresponding to the pre-ignition phase (tp = 0.9 ms) and combustion phase (¢ = 1.0 ms) in the
monodisperse mixture with non-uniformly distributed microparticles (Np,(z) = Npn(x)).

3. Results and discussion
3.1. Mechanism of radiant preheating
As the planar flame propagates through the channel from its closed end the expansion of the
combustion products trigger the flow, accelerating the fresh mixture and the propagating flame
front. The initially static fresh mixture accelerates up to the velocity uy = (© — 1)U; while
the flame front in the laboratory reference frame accelerates up to the Uy = ©Uy, where
Uy is a burning velocity and © = ps/py is an expansion factor determined as a ratio of fresh
mixture and burning products densities. According to this the flame consumes the moving
combustible mixture with a relative velocity equal to burning velocity U;. Therefore the flame
should reach the margin of the moving distant cloud during At = Lo/U;. The criterion of
the successful autoignition at the particles cloud margin can be formulated as follows. If
the time of the gas-particle mixture heating up to the characteristic ignition temperature is
shorter than the time of flame arrival to the particles cloud margin, the independent ignition
will occur. For the following parameters of the particles d, = 1.5um, p,o = 1.0 g/cm3,
cpp = 107 erg/g/K, their distribution N, = 6 x 107 em™3 and radiant flux emitted from
the flame front ¢,oq = o7, ;1 = 4.6 x 10Y erg/s/cm? (where combustion products temperature
is T, = 3000 K) the time of hydrogen-oxygen mixture heating up to the characteristic ignition
temperature of 1050 K can be estimated as At = 1.0 ms by the order of magnitude. Thus the
minimal distance Ly between the cloud margin and primal ignition zone should be not less than
1.0 cm for successful autoignition (Uy = 1200 cm/s).

Let us consider an ignition kernel formation at the margin of the particles cloud in case when
the initial particles distribution has a step-wise distribution (N,(z) = Npn(z), where z =0 is a
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cloud margin position). Particles heated by the absorbed radiant flux transfer the heat to the
environmental gas causing its expansion and corresponding redistribution of the particles inside
the absorption region. As a result, one can observe a non-uniform temperature distribution with
local maximum at the clouds boundary and descending temperature gradient inside the cloud.
As the characteristic time scales of radiant heating and inter-phase thermal exchange is much
larger than acoustic time scale the pressure inside the absorption zone equalizes and the ignition
takes place at almost constant pressure equal to the initial one. The ignition takes place via
the mechanism of non-steady thermal explosion in the presence of temperature gradient first
proposed by Ya B Zel’dovich [11]. As one can see in figure 2, the ignition at the step-wise margin
causes the formation of slow combustion wave propagating out from the cloud margin.
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Figure 3. Temperature profiles at sequential time instants representing the heated kernels
formation and further ignition in polydisperse mixture with non-uniform particles distribution
(Np1(x) = Npin(x) — Npin(x — 1), Np2(x) = Npan(xz —1)). to = 50 us, At =100 ps.

3.2. Multi-kernel ignition in the polydisperse medium

Now let us consider the features of ignition kernels formation in the medium seeded with particles
of different sizes (polydisperse medium). Let us analyze the particles distribution such that the
radiant flux will first overcome a thin layer (of width [ = 0.5 cm) of small particles with radiation
free path length L, and then propagate through the medium with radiation free path length Lo
seeded with larger particles (Npi(x) = Npin(x) — Npin(x —1), Npa(x) = Npan(x —1)). According
to such a problem setup the thin layer absorbs the radiation in the range of wave lengths A < d,,;.
In the remaining space (x > [) the waves with A < dy are absorbed on the free path length Lo
(dp1 and dp are the particles diameters, dp; < dp2). To simplify the analysis the parameters of
the particles are chosen in a way to avoid the distinctions in their dynamics and features of inter-
phase thermal exchange. Figure 3 represents the evolution of the temperature distribution inside
the absorption zone. One can observe a formation of “two-humped“ temperature profile due to
the changes in absorption mechanisms first on the margin between gas and thin layer of small
particles and then on the margin between this layer and the region seeded with larger particles.
The ignition occurs independently in both kernels. Thus in the polydisperse medium the regime
of multi-kernel ignition becomes possible. It determines higher intensity of the combustion and
as a result higher intensity of dynamic loads that is of interest for explosion safety problems.
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Figure 4. Temperature (middle) and pressure (bottom) profiles at sequential time instants
representing the detonation formation inside the absorption zone (N,(x > 0) = N,z /h). The
upper domain shows the particles redistribution during the pre-ignition phase. tg = 4.98 ms,
At =4 ps.

3.8. Shock waves and detonation formation at the smooth cloud margin

As it was mentioned above the ignition inside the absorption zone arises via the Zel’dovich
gradient mechanism [11]. In cases presented above (see figures 2, 3) the heat absorption on
the step-wise margins causes relatively small smoothening of the margin and correspondingly
rather steep temperature gradient formation. According to the Zel’dovich classification such a
steep gradient corresponds to the ignition of slow combustion wave (see also [12]). However if it
becomes possible to achieve more smooth temperature distribution the fast combustion waves
with shocks running ahead or even detonation waves will arise.

In real situation in presence of convective flows, there should be no step-wise margins between
pure gas and gas-particles clouds. The margins are diffusively smoothening in the space and
the absorption inside such regions with non-uniform particles distribution causes formation
of distinct temperature profiles. We carried out the calculations with initial non-uniform
distribution of the particles Np(z > 0) = Npx/h, where h is a thickness of the initial cloud
margin. It can be shown that as initial rate of margin‘s smoothening (h) rises the temperature
gradient in the vicinity of its maximum becomes shallower and more violent combustion regimes
can arise. The slow combustion transforms into the fast combustion propagating behind the
outrunning shock wave and then into the detonation. The latter case of detonation formation
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inside the autoignition kernel is represented in figure 4. In natural conditions the probability
of such an autoignition regimes point out the high explosiveness of combustible heterogeneous
mediums.

4. Conclusions

The numerical results allowed us to demonstrate hazardous specific features of combustion
inside the chemically active heterogeneous mixtures with non-uniform distribution of inert
microparticles. In presence of evolving flame front the local clusters (clouds) of microparticles
distant from the primal ignition zone absorbs the radiant heat emitted from the hot combustion
products. If the distance between the cloud margin and the primal ignition zone is large enough
the radiant heating can cause local auto-ignition far ahead of the propagating flame. The
independent ignitions intensify the combustion sufficiently. In case of polydisperse mixture,
the probability of multi-kernel ignition arises. In presence of spatial gradients of particles’
concentration, the shallow temperature gradients arise that in turn leads to the formation of
fast combustion waves, shock waves and even detonation. The discussed results on heterogeneous
combustion and explosion regimes triggered by radiant transfer and absorption allow estimate
the explosiveness of chemically active dispersed media.
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