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Abstract. Dynamical generation of quark masses in the infrared region of QCD plays an
important role to understand the peculiar nature of the physics of hadrons. As it is known,
the solution of QCD gap equation for the quark mass function is flat for low momentum,
but smoothly evolves to the perturbative behavior at high momentum. In this work, we use
an effective truncation of QCD gap equation valid up to 1 GeV, and implement it at finite
temperature and chemical potential to understand the QCD phase diagram for chiral symmetry
breaking-chiral symmetry restoration, and confinement-deconfinement phase transitions from
the Schwinger-Dysin equations point of view. Our effective kernel contains a gluon dressing
function with two light quark flavors Ny = 2, with current quark mass 0.0035 GeV. An effective
coupling, adjusted to reproduce the behavior of the chiral condensate at finite 7' complements
our truncation. We find the critical end point of the phase diagram located at the temperature
T¥ =0.1245 GeV and the baryonic chemical potential p% = 0.211 GeV.

1. Introduction

QCD at finite temperature and chemical potential plays an important role to understand the
different transitions that took place in the early universe, after a few micro seconds from the Big
Bang. As it is known, the observable degrees of freedom of quantum chromodynamics (QCD)
at low temperature are the color-singlet hadrons, while at high temperature, the interaction
between quark and gluons becomes weaker, causing hadrons to split up in a new phase where
the dominant degrees of freedom are the quarks and gluons. This type of phase transition is
referred to as confinement-deconfinement transition.

The vanishing of dynamically generated quark mass at high temperature T and/or chemical
potential p corresponds to another type of transition i.e., chiral symmetry restoration, while
at zero T and p, chiral symmetry is broken. Thus, when the strength of the QCD interaction
diminishes with increasing T" and p, only the current quark masses survive when 7" and p exceed
a set of critical values. This is the chiral symmetry breaking-restoration phase transition. As for
experiment is concerned, implications of chiral symmetry breaking for the elastic and transition
form factors of mesons and baryons form an integral part of the planned program at the 12

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



XIV Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 651 (2015) 012018 doi:10.1088/1742-6596/651/1/012018

GeV upgrade of the Thomas Jefferson National Accelerator Facility in Virginia [1]. There are
other experiments around the world that might help to understand the confinement and chiral
transitions like RHIC in Brookhaven, LHC at CERN, and future experiment proposals like CBM
at FAIR, in Germany.

In this work we use the Schwinger-Dyson Equations (SDE) approach to study the above
mentioned phase transitions from first principles. We exploit the idea that dynamically generated
masses for the quark are constants in the infrared region for momentum lower than 1 GeV, and
promote this to finite temperature and density to understand the QCD phase transitions. For
our effective kernel, we use a model for the gluon propagator which is consistent with the refined
Gribov-Zwanziger scenario for confinement and is in agreement with lattice QCD. We consider
the case in which the propagator has quark flavor dependence, Ref. [2], and dress our kernel
with a momentum dependent effective coupling as in Refs. [3, 4]. We calculate the chiral quark
condensate for different values of temperature and match with lattice data, Ref. [5], at finite
temperature. We then extend this parametriazation of the condensate at finite density. For
the confinement-deconfinement transition, we use the spatial average of the scalar part of the
quark propagator at zero spatial and explore violation of reflection positivity. The contribution
is organized as follows: In. Sect. 2 we present the SDE for the quark propagator at finite
temperature and density. Section 3 is devoted to introduce the Constant Mass Approximation
and our effective kernel. Discussion and conclusions of our findings are presented in Sect. 4.

2. QCD Gap Equation at T'# 0 and p # 0
The quark propagator is a basic object to analyze dynamical chiral symmetry breaking and
confinement. At finite T" and p, we start from the general form of this two-point function

STHP.@n) = ((7.D)A(*, 07) + 0@ C (B, &07) + B(D°, &), (1)

where w,, = wy, + iu, with p representing the chemical potential and w, = (2n + 1)7T" are the
fermionic Matsubara frequencies. A(p?,w?2), B(p?,w?2) and C(p?,w2) are the scalar functions
to be self consistently determined through solving the correspondmg SDE or gap equation

Sil(ﬁ;a}n) = (7/7]3) +i70‘:)n+m+2(ﬁaan)7 (2)

in which m is the bare mass for the quark, the self energy has the form

ey d3l<; RN

S(E) = T Z/ 9 Dy (5= K. Qs 7o) S (ko) G Lo (R P60, B (3)

Q1 = wp —w; and FV(E, P, Wy, Wy) is the full quark-gluon vertex. Due to the heat bath, the gluon
propagator splits into longitudinal and transverse parts, namely

Dy (&, 901) = P, DT (&, 907)) + B, DM@, 0y, mD). (4)

The longitudinal part is modified by an extra term, the Debye screening mass m%, = (4/3)T? +
p?/m? [6]. In Eq. (4), PT is the transverse and P#LI, is the longitudinal projection operators,

given by P#LV = O — QMQ,,/Q2 W, P44 POTO =0, Pg = 0;j — qiqj/qa. We complete our gap
equation kernel by considering

92Duu(q_279 ) (k pawlawn) - geff( Q2 )Duu((jgagil)C(T)’Ym (5)

where we introduce ((7") to match with the lattice results.
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3. Constant Mass Approximation

The constant mass approximation approach (CMA) has been motivated in the field of magnetic
catalysis of dynamical chiral symmetry breaking [7]. It is based on the observation that the
kernel of gap equation yields only contribution from the small momentum region, where the
mass function is roughly constant. From Eqs.(1) and (2), and using our effective kernel, Eq.
(5), after taking the trace we reach to the following expression for our B(p?,w2) function

B(ﬁQ,aﬁ) =
l +o0

_7TC 7 )geff( Q ) ( invm%)+2DT(q_Q)Q121l) (6)

l—foo

Here op(p?,@2) = —B(ﬁQ,w )/(_QA2(p 02) + @2C?*(p%, @ )—i—BQ( ,@2)). The mass function
for the quark is M(f2,&2) = B(p2,&2)/A(P2,&2). We set A(K2, ~2) = C(k%, W) = 1. We
further take p = 0 and take all the B functions to be independent of momentum. Replacing
B(p? = 0,%2) = My(w?), we have the following tower of relations of constant masses for every
Matsubara frequency

Mo(cDQ) = m

A% )geff(k2 Q 0
k2+wl + Mg (w})

D (k2 inamZD)_FzDT(EZaQiZ) . (7)

For the gluon propagator, we take DL'(K, m%) = DT(K,0) = D(K), where we have selected the
following form of the flavor dependent dressing for the gluon in Landau gauge

K? + M?
D(K?) = e , (8)
K*+ K2(M} — =022 + MEm}

where K? = k2 + Q?Ll. The parameters in this dressing function are the following: M; = 4.85
[GeV?], which is related to the condensate of auxiliary fields emerging when incorporating the
horizon condition to the action, g7 < A} >= 0.474(16.406 — Ny) [GeV?] is related to the

dimension-two gluon condensate and mo = 1.011(9.161 — N;)~'/2 [GeV?. We complete our
kernel with the effective interaction ggff(l?, 02) = Aragv(k?, 02,) where v(k2, 02)) is given by
as in Refs. [3, 4] by

a+b<%)2
1+C(§)2+d(1§>4+0(1§>6+m[e:&)2]

with a = 1.47; b = 0.881; ¢ = 0.314; d = 0.00986; 0 = 0.00168; v = 12/25; A = 0.234; ap = 0.7.
The parameter ((7') is fitted with lattice data is in the form (see discussion below)

v(K?) = : (9)

ar + 0T + 1 T?
C(T) = 2 3
1+diT+eT? + fiT

(10)

where a; = 0.355; by = —2.83; ¢ = 6.627; di = —6.74; e; = 4.45; f; = 43.35. The chiral
condensate, in our case is

2N T A2 Mo (?)

" + @2+ ME(@2)

— < >= (11)
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and we use the ultraviolet cut-off A2 = 1 GeV2. The confinement order parameter is defined
through the function [§]
_ Mo(@p)
T zwn’r n 12
Z ‘ @2+ MG(@2) 12)
According to the axiom of reflection positivity, if A(7) is positive for all 7, then the particle is

stable, otherwise is confined. The inverse of the value of 7 at which the first crossing occurs
(7 > 0) is taken as the order parameter for confinement.

4. Discussion and Conclusion

We solve the gap equation Eq.(2) for different Matsubara frequencies. We then calculate the
chiral quark condensate at values of the temperature and fit with Lattice data [5] at finite
temperature to determine the parameters of ((7") in eq. (10). The comparison of our fitted
condensate versus the lattice data is shown in Fig. 1. Our gap equation solution provide us
the full plateau for evolution of the chiral quark condensate from lower to higher temperature
domain.
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Figure 1. Chiral condensate as a function of temperature and at zero chemical potential: the
blue curve represent the CMA result, while the red dots are the Lattice QCD data for the chiral
condensate.

Working with finite quark masses, the chiral condensate is not a true order parameter for
the chiral transitions. Nevertheless, we still can extract the pseudo-critical temperature by
taking the derivative of the condensate, with respect to the temperature i.e., the temperature
gradient of the chiral condensate as shown in Fig. 2. The maximum lies at T, = 0.161 GeV
(pseudo-critical temperature), while for Lattice it is T!% = 0.154 GeV. According to the Lattice
prediction, the mentioned pseudo-critical temperature at zero chemical potential is the origin of
the cross over phase transition in the QCD phase diagram.

Next, we include the quark chemical potential p, (or baryonic chemical potential pp = 3114)
and calculate the chiral quark condensate. It is plotted as a function of the temperature
for different values of the chemical potential in Fig. 3. The plot shows smooth pointwise
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Figure 2. The thermal gradient of the chiral condensate, peak at T' = 0.161 GeV and at zero
chemical potential.

evolution of the condensate upto pg = 0.07 (up = 0.210) GeV, while for higher than p, = 0.07
(up = 0.210)GeV, a discontinuity occurs.
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Figure 3. Chiral quark condensate as function of temperature and chemical potential: red
dots represent Lattice QCD data at g = 0 GeV, CM Result: blue squares represent, p, = 0
GeV , black diamonds, ity = 0.03 GeV, brown triangles 1, = 0.05 GeV, Green inverted triangles
tqg = 0.07 GeV, orange open circles ;1 = 0.0705 GeV, gray open squaresji, = 0.08 GeV, cyan
open diamonds, p, = 0.09 GeV, pink open triangles i, = 0.1 GeV, magenta inverted open
triangles iy = 0.15 GeV, purple circles p, = 0.2 GeV, yellow squares p, = 0.25 GeV.

In Fig. 4 we take the temperature gradient of the chiral quark condensate for different values
of chemical potential. The plot shows the highest change occurs near Ty = 0.1245 GeV and
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chemical potential 14, = 0.07044 (up, = 0.21132) GeV.
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Figure 4. The thermal derivative of the chiral condensate at different chemical potential: red
line represent iy = 0 GeV, black dots represent i, = 0.03 GeV, blue dashes represent i, = 0.05
GeV, brown dashed dots i, = 0.07 GeV.

In Fig. 5 we plot vp(up) i.e, the height of the thermal gradient —0r <1/J1/)> as a function of
temperature for different value of the chemical potential. It shows the domams where different
transitions occur. The vp(up) drawn on the vertical line, becomes singular as it approaches the
dashed line, suggesting a change in the nature of phase transition from a simple cross-over to a
first order phase transition.

We draw QCD phase diagram in Fig. 6, where temperature is along the vertical axis and
baryonic potential pup along the horizontal axis. We locate the critical end point of the cross
over and start of a first order phase transitions at (Ir = 0.1245 GeV, up = 0.21132 GeV).
Thus we find that CMA approach describes that, there is cross-over in small region of chemical
potential, while at higher chemical potential the transition becomes of first order. There are
chiral symmetry breaking and restoration and confinement-deconfinement transition. Other
approaches, which include chiral models and NJL-inspired models, place this point in the
region (pg/Te,Tr/Tc) ~ (1.0 - 2.0, 0.4 - 0.8) [9], whereas some mathematical extensions of
lattice techniques [10] yield (ugp/Te,Tr/T:) ~ (1.0 - 1.4, 0.9). We observe that the location
(ug/Te,Te/T:) ~ (1.3,0.7) established by the CMA gives a smaller value of up than the one
derived from a truncation of the gap equation considering the full momentum dependence of the
quark propagator [6], but in fair agreement with other approaches. It could be due to the lack
of control of the confinement scale with the chemical potential in the effective kernel of the gap
equation. This issue and details of the confinement test will be addressed elsewhere [11].
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Figure 5. The height of the thermal derivative vp(up) is plotted as a function of the baryonic
chemical potential (up), that shows the domains where different transitions occur.
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Figure 6. QCD phase diagram: Temperature vs baryonic chemical potential, the red diamonds
represent the confinement-deconfinement transition, while the blue circles represent the chiral
symmetry breaking-restoration. The purple dot represent the critical end point at (T = 0.1245
GeV, pugp = 0.21132 GeV).
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