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Abstract. Proton structure functions are measured in electron-proton collision through
inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum
fraction carried by the struck parton. Proton structure functions are currently described
with excellent accuracy in terms of scale dependent parton distribution functions, defined in
terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton
densities increase and are ultimately expected to saturate. In this regime DGLAP evolution
will finally break down and non-linear evolution equations w.r.t x are expected to take over.
In the first part of the talk we present recent result on an implementation of physical DGLAP
evolution. Unlike the conventional description in terms of parton distribution functions, the
former describes directly the Q dependence of the measured structure functions. It is therefore
physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more
stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects.
It however requires a precise measurement of both structure functions F2 and FL, which will be
only possible at future facilities, such as an Electron Ion Collider. In the second part we present
a recent analysis of the small x region of the combined HERA data on the structure function
F2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective
Pomeron intercept, determined from the combined HERA data, once a resummation of collinear
enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale
setting procedure. We also provide a detailed description of the Q and x dependence of the
full structure functions F2 in the small x region, as measured at HERA. Predictions for the
structure function FL are found to be in agreement with the existing HERA data.

1. Introduction
The description of the proton in terms its elementary constituents, quarks and gluons, remains
one of the big unsovled problems of nuclear- and elementary particle physics. At the
typical energy scale of the proton, which is of the order of ΛQCD ' 200 MeV, Quantum

Chromodynamics, the Quantum Field Theory description of strong interactions is strongly
coupled, and quarks and gluons are subject to confinement. It is however possible to obtain
very valuable information about the structure of the proton from collision processes of protons
with leptonic projectiles, such as the electron. Due to the point-like structure of the electron
and a very good theoretical understanding of electromagnetic interactions, the electron provides
the perfect probe to explore the nucleon. To leading order in Quantum Electrodynamics (QED),
scattering of the electron and the proton takes place through the exchange of a virtual photon
with virtuality q2 = −Q2, see Fig. 1. If the photon virtuality is large, the proton is destroyed
during the scattering and the process is generally referred to as Deep Inelastic Scattering (DIS).
The cross-section for neutral-current DIS on unplolarized nucleons can be written in terms of
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Figure 1. Schematic diagram of the Deep Inelastic Scattering (DIS) process. Measurement
of the final state electron allows to determine inclusive nuclear structure functions in terms of
the resolution scale Q2 = −q2 provided by the photon virtuality and Bjorken x = Q2/(2p · q)
(Figure taken from [1] ).

two Lorentz invariant structure functions F2 and FL in the following way

d2σ

dxdQ2
=

4πα2
e.m.

xQ4

[(
1− y +

y2

2

)
F2(x,Q2)− y2

2
FL(x,Q2)

]
(1)

Here y = (q ·p)/(k ·p) denotes the inelasticity with 0 < y < 1, see also Fig. 1. The structure func-
tions themselves depend on only two Lorentz invariants, the photon virtuality Q2 and Bjorken
x = Q2/(2p · q). Within the parton model, to be discussed below, x denotes the momentum
fraction of the parton hit by the virtual photon.

If the photon virtuality Q2 is significantly larger than the non-perturbative energy scale of
the proton, asymptotic freedom provides for such processes a weak strong coupling constant
αs(Q

2) � 1 and a description within perturbative theory becomes possible. The conventional
theoretical framework for such DIS processes is based on the collinear factorization theorem [2].
At leading order, the essential physics is captured by the parton model [3] of the proton. Within
this model, the highly virtual photon interacts not with the entire proton with characteristic
size ∼ 1/ΛQCD, but with a single, essentially point-like, parton, i.e., a quark or gluon, with

effective size 1/Q. Interference effects with spectator quarks or gluons are on the other hand
suppressed by powers of Q2. To arrive at the complete cross-section, the “partonic” interac-
tion of virtual photon and quark, needs to be convoluted with parton distribution functions
(PDFs), fi(x,Q

2), i = q, q̄, g, which encode the probability to find a parton with a certain pro-
ton moment fraction inside the proton. Higher order corrections to such partonic cross-sections,
calculated within QCD perturbation theory, possess reveal then a new kind of singularity, apart
from the conventional ultra-violet singularity, which is removed through renormalization of the
QCD Lagrangian. This new singularity is of infra-red type and can be associated with configu-
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rations where an additionally emitted parton is collinear to the proton momentum. In physical
terms, this initial state singularity reflects interference between the perturbative calculable par-
tonic interactions at the hard scale Q, with spectator quarks and gluons, characterized by the
hadronic scale ΛQCD. Collinear factorization provides then a systematic framework to remove

such singularities from the perturbative hard cross-section, resulting into finite Wilson coeffi-
cients [4–7], absorbing them into parton distribution functions, which encode the long-distance,
non-perturbative physics; for a recent review see, e.g., [8].

To make the separation between long- and short-distance physics manifest, one needs to
introduce some arbitrary factorization scale µf , apart from the scale µr appearing in the renor-
malization of the strong coupling αs. The independence of physical observables such as F2,L

on µf can be used to derive powerful renormalization group equations (RGEs) governing the
scale dependence of PDFs in each order of perturbation theory, known as the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equation. The corresponding kernels are the anoma-
lous dimensions or splitting functions associated with collinear two-parton configurations [9–11].
DGLAP evolution has been impressively confirmed by experiment, in particular through the
very accurate DIS data on the structure function F2 from the DESY-HERA experiment, see
Fig. 2. In particular, parton distribution functions, fitted at some initial scale Q0 ' 1− 2 GeV
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Figure 2. Left: Combined HERA data and parton distribution functions. Right: Proton parton
distribution functions plotted as functions of Bjorken x. (Source [12])

and evolved with the DGLAP equations, have been shown to describe F2 data over orders of
magnitude, both in x and Q2 [13].

Despite of the impressive success of the DGLAP evolution equations, theoretical
considerations suggests that at some point in phase space this description is supposed to break
down. With decreasing x, logarithms ln 1/x increase and are capable of balancing the strong
coupling, αs ln 1/x ∼ 1, leading to a break-down of the näıve perturbative expansion, see Fig. 3.
The necessary resummation of enhanced terms (αs ln 1/x)n is the achieved by the Balitsky-
Fadin-Kuarev-Lipatov (BFKL) evolution equation [14]. One of the main predictions of BFKL
evolution is a power-like rise of the gluon density. If continued to ultra-small x, the 1/Q2

expansion, on which collinear factorization is based, will eventually break down. A description
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Figure 3. Left: The proton wave-function at small-x contains a large number of gluons as
compared to the same wave-function at a larger x = x0. The figure is a projection on the plane
transverse to the beam axis. Right: The map of high energy QCD in the (Q2 , Y = ln 1/x)
plane. (Source [1])

of proton structure functions in this region of phase space is provided by the Balitsky-Kovchegov
(BK) [15] and JIMWLK [16] evolution equations, which provide a non-linear extension of BFKL
evolution, resumming corrections due to high gluon densities to all orders. While theoretical
arguments suggests the relevance of such corrections already at current collider energies, current
data provide no clear evidence for deviations from linear DGLAP evolution, which would provide
a signature for the onset of a non-linear kinematic regime dominated by high, or saturated, gluon
densities. Definite evidence for such a regime of QCD requires therefore new experiments such as
a future high-luminosity electron-ion collider, i.e.., the EIC [1] and the LHeC [17] projects, whose
physics case is currently studied. In particular these projects plan to measure both structure
functions F2 and FL and their scaling violations very precisely at small x both in electron-proton
and in electron-heavy ion collisions.

From the theory side this requires the development of suitable tools which allows to pin
down possible deviations from DGLAP evolution. In particular it is necessary to reduce the
large freedom in fitting initial conditions of parton distribution functions. With non-linear
saturation effects most likely to manifest themselves at small values of Q2, the large number
of free parameters used for the description of initial conditions in PDF fits, does not allow to
exclude the possibility that saturation effects, while present in reality, are currently hidden in
the initial conditions of DGLAP evolution.

In the following we present two approaches which have the potential to restrict this large
freedom at low scales. Section 2 is dedicated to the concept of physical evolution kernels, which
allows to reduce the number of independent PDFs in DIS fits and eliminates scale- and scheme
dependence in their definition. Section 3 contains results of a recently achieved BFKL fit of the
combined HERA data. While both theoretically and experimentally less explored than collinear
factorization, BFKL evolution has the potential to reveal the emergence of non-linear effects
more easily than DGLAP evolution. Unlike DGLAP evolution, BFKL drives the system into
the saturated regime, making a detection of high density effects more likely. For details we refer
to [18–20]
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2. Physical evolution kernels for DIS observables
Since collinear factorization can be carried out in infinitely many different ways, one is left
with an additional choice of the factorization scheme for which one usually adopts the MS
prescription. Likewise, the RGE governing the running of αs with µr can be deduced from
taking the derivative of F2,L with respect to µr. Upon properly combining PDFs and Wilson
coefficients in the same factorization scheme, any residual dependence on µf is suppressed by
an additional power of αs, i.e., is formally one order higher in the perturbative expansion but
not necessarily numerically small.

Alternatively, it is possible to formulate QCD scale evolution equations directly for physical
observables without resorting to auxiliary, convention-dependent quantities such as PDFs. This
circumvents the introduction of a factorization scheme and µf and, hence, any dependence of the
results on their actual choice. The concept of physical anomalous dimensions is not at all a new
idea and has been proposed quite some time ago [4, 21, 22] but its practical aspects have never
been studied in detail. The framework is suited best for theoretical analyses based on DIS data
with the scale µr in the strong coupling being the only theoretical ambiguity. In addition, F2,L

or their scaling violations can be parametrized much more economically than a full set of quark
and gluon PDFs, which greatly simplifies any fitting procedure and phenomenological analysis.
The determination of αs from fits to DIS structure functions is the most obvious application, as
theoretical scheme and scale uncertainties are reduced to a minimum.

Here we largely focus on the practical implementation of physical anomalous dimensions
in analyses of DIS data up to next-to-leading order (NLO) accuracy. We shall study in
detail potential differences with results obtained in the conventional framework based on scale-
dependent quark and gluon densities, which could be caused by the way how the perturbative
series is truncated at any given order.

2.1. Theoretical Framework
This gist of the factorization scheme-invariant framework amounts to combine any two DIS
observables {FA, FB} and determine their corresponding 2 × 2 matrix of physical anomalous
dimensions instead of the scale-dependent quark singlet, Σ ≡

∑
q(q+ q̄), and gluon distributions

appearing in the standard, coupled singlet DGLAP evolution equations. Instead of using
measurements of F2 and FL (actually their flavor singlet parts), one can also utilize their
variation with scale for any given value of x, i.e., dF2,L(x,Q2)/d lnQ2 as an observable. The
required sets of physical anomalous dimensions for both {F2, FL} and {F2, dF2/d lnQ2} have
been derived in [22] up to NLO accuracy. The additionally needed evolution equations for the
non-singlet portions of the structure functions F2,L are simpler and not matrix valued. As we
shall see below, the required physical anomalous dimensions comprise the inverse of coefficient
and splitting functions and are most conveniently expressed in Mellin n moment space. The
Mellin transformation of a function φ given in Bjorken x space, such as PDFs or splitting
functions, is defined as

φ(n) ≡
∫ 1

0
dxxn−1φ(x) , (2)

where n is complex valued. As an added benefit, convolutions in x space turn into ordinary
products upon applying (2), which, in turn, allows for an analytic solution of QCD scale evolution
equations for PDFs. The corresponding inverse Mellin transformation is straightforwardly
performed numerically along a suitable contour in n space, see, e.g., Ref. [23] for details. The
necessary analytic continuations to non-integer n moments are given in [24,25], and an extensive
list of Mellin transforms is tabulated in [26]. We will work in Mellin space throughout this review.

Assuming factorization, moments of DIS structure functions FI at a scale Q can be expressed
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as

FI(n,Q
2) =

∑
k=q,q̄,g

e2
k CI,k

(
n, αs(µ

2
r),

Q2

µ2
f

,
µ2
r

µ2
f

)
· fk

(
n, αs(µ

2
r),

µ2
f

Q2
0

,
µ2
r

µ2
f

)
(3)

where the sum runs over all contributing nf active quark flavors with electric charge squared
e2
q and the gluon g, each represented by a PDF fk. For e2

g, the averaged quark charge factor

ē2
q = (1/nf )

∑
q e

2
q has to be used. µr and µf specify renormalization and factorization scale,

respectively. The scale Q0 defines the starting scale for the PDF evolution, where a set of non-
perturbative input distributions needs to be specified. For simplicity we identify in the following
the renormalization scale with the factorization scale, i.e., µr = µf ≡ µ. The coefficient functions
CI,k are calculable in pQCD [4–7] and exhibit the following series in as ≡ αs/4π

CI,k

(
n, αs(µ

2),
Q2

µ2

)
=
∑
m=m0

ams (µ2) C
(m)
I,k

(
n,
Q2

µ2

)
, (4)

where m0 depends on the first non-vanishing order in as in the expansion for the observable
under consideration, e.g., m0 = 0 for F2 and m0 = 1 for FL.

Each PDF fk(n, µ
2/Q2

0) obeys the DGLAP evolution equation which reads

d

d lnµ2
fk

(
n,
µ2

Q2
0

)
=
∑
l=q,q̄,g

Pkl
(
n, αs(µ

2)
)
fl

(
n,
µ2

Q2
0

)
(5)

where the l → k splitting functions have a similar expansion [9–11] as the coefficient functions
in Eq. (4):

Pkl(n, αs(µ
2)) =

∑
m=0

as(µ
2)1+m P

(m)
kl (n) . (6)

The Pkl(n) relate to the corresponding anomalous dimensions through γkl(n) = −2Pkl(n) in the
normalization conventions we adopt, where we use the leading order (LO) and NLO expressions
for γkl(n) given in App. B of the first reference in [10]. We note that the same normalization is
used in the publicly available Pegasus evolution code [23]. In practice one distinguishes a 2×2
matrix-valued DGLAP equation evolving the flavor singlet vector comprising Σ(n, µ2/Q2

0) and
g(n, µ2/Q2

0) and a set of nf − 1 RGEs for the relevant non-singlet quark flavor combinations.
The scale-dependent strong coupling itself obeys another RGE governed by the QCD beta

function
das(µ)

d lnµ2
= β(as) = −

∑
m

am+2
s βm (7)

with β0 = 11 − 2nf/3 and β1 = 102 − 38nf/3 up to NLO accuracy. To compare below with
the results for the physical anomalous dimensions in Ref. [22] we also introduce the evolution
variable

t ≡ − 2

β0
ln

(
as(Q

2)

as(Q2
0)

)
. (8)

Instead of studying FI(n,Q
2) in (3) in terms of scale-dependent PDFs, which are obtained

from solving the singlet and non-singlet DGLAP equations (5) in a fit to data [13], one can
also derive evolution equations directly in terms of the observables FI(n,Q

2). To this end, we
consider a pair of DIS observables FA and FB, to be specified below, whose scale dependence is
governed by a coupled matrix-valued equation

d

d lnQ2

(
F

(S)
A (n,Q2)

F
(S)
B (n,Q2)

)
=

(
KAA KAB

KBA KBB

)
(n, as(Q

2)) ·

(
F

(S)
A (n,Q2)

F
(S)
B (n,Q2)

)
(9)
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for the flavor singlet (S) parts of FA,B and a set of non-singlet (NS) equations

dF
(NS)
A,B (n,Q2)

d lnQ2
= K(NS)(n, as(Q

2)) · F (NS)
A,B (n,Q2) (10)

for the remainders.
The required physical anomalous dimensions in Eqs. (9) and (10), obey a similar perturbative

expansion in as as in (6). The singlet kernels in (9) are constructed by substituting(
F

(S)
A (n,Q2)

F
(S)
B (n,Q2)

)
= ē2

f C

(
n, αs(µ

2),
Q2

µ2

)
·
(

Σ(n, µ2/Q2
0)

g(n, µ2/Q2
0)

)
(11)

into the left-hand side of Eq. (9) and taking the derivatives. Note that we have normalized the
quark singlet part of FA,B with the same averaged charge factor ē2

f which appears in the gluonic

sector. Upon making use of the RGEs for PDFs and the strong coupling in Eq. (5) and (7),
respectively, one arrives at

Kij(n, αs(Q
2)) =

[(
β(as(Q

2))
∂C(n, αs(Q

2), 1)

∂as(Q2)

+ C(n, αs(Q
2), 1) · P (n, as(Q

2))

)
· C−1(n, αs(Q

2), 1) ,

]
ij

(12)

where we have introduced 2× 2 matrices

C =

(
CA,q CA,g
CB,q CB,g

)
, P =

(
Pqq 2nfPqg
Pgq Pgg

)
. (13)

for the relevant singlet coefficient and splitting functions, respectively. An analogous, albeit
much simpler expression holds for the NS kernel K(NS) in (10). As has been demonstrated
in [22], the kernels (12) are independent of the chosen factorization scheme and scale but do
depend on µr and the details of the renormalization procedure. We also note that the inverse
C−1 in (12), appearing upon re-expressing all PDFs by FA,B, can be straightforwardly computed
only in Mellin moment space.

2.2. Example I: F2 and FL
Let us first consider the evolution of the pair of observables {F2, FL}. A precise determination
of FL in a broad kinematic regime is a key objective at both an EIC [1] and the LHeC [17].
Since the perturbative series for FL only starts at O(as), one wants to account for this offset

by actually considering the evolution of either {F2, FL/(asC
(1)
L,g)} or {F2, FL/(asC

(1)
L,q)}. Both

sets of kernels KAB show a rather different behavior with n, as we shall illustrate below, but
without having any impact on the convergence properties of the inverse Mellin transform needed
to obtain x dependent structure functions. The kernels KAB at LO and NLO accuracy for

{FA, FB} = {F2, FL/(asC
(1)
L,g)} can be found in [22]. Note that evolution in [22] is expressed in

terms of t. Using (8), d/das = −2/(asβ0)d/dt, and (7) to compute to extra terms proportional
to β(as), we fully agree with their results.
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For {FA, FB} = {F2, FL/(asC
(1)
L,q)} one finds

K
(0)
22 = P (0)

qq −
C

(1)
L,q

C
(1)
L,g

P (0)
qg , K

(0)
2L =

C
(1)
L,q

C
(1)
L,g

P (0)
qg , (14)

K
(0)
L2 =

C(1)
L,g

C
(1)
L,q

−
C

(1)
L,q

C
(1)
L,g

P (0)
qg − P (0)

gg + P (0)
qq , K

(0)
LL =

C
(1)
L,q

C
(1)
L,g

P (0)
qg + P (0)

gg

at the LO approximation, i.e., after expanding Eq. (12) up to O(as). Only the off-diagonal

entries change if dividing FL by asC
(1)
L,g; see Eqs. (41)-(45) in Ref. [22]. For NLO kernels we refer

to [18].
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Figure 4. Physical anomalous dimensions KAB(n) in LO and NLO for {FA, FB} =

{F2, FL/(asC
(1)
L,q)} assuming αs = 0.2 and nf = 3. The dash-dotted and dotted lines show

the NLO results where all contributions from C
(2)
L,i and β0, respectively, to K

(1)
AB have been

omitted. A global factor of αs/4π has been ignored in the perturbative expansion, i.e.,

KAB = K
(0)
AB + (as/4π)K

(1)
AB +O(a2

s) is displayed.

In Fig. 4 we illustrate the n dependence of the LO and NLO singlet kernels KAB for the

evolution of {FA, FB} = {F2, FL/(asC
(1)
L,q)} assuming αs = 0.2 and nf = 3. As can be seen, NLO
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(1)
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corrections are sizable for all singlet kernels, in particular, when compared with the perturbative
expansion of the singlet splitting functions Pkl(n) in (6); see Figs. 1 and 2 in Ref. [11]. This
is, however, not too surprising given that the known large higher order QCD corrections to
the Wilson coefficients CL,g and CL,q [27] are absorbed into the physical anomalous dimensions
KAB for the evolution of the DIS structure functions F2 and FL. The impact of contributions

from the NLO coefficients C
(2)
L,g and C

(2)
L,q on the results obtained for KAB is illustrated by the

dash-dotted lines in Fig. 4. Another source for large corrections are the terms proportional to β0

in the NLO corrections as can be inferred from the dotted lines; note that K
(1)
L2 and K

(1)
LL include

terms proportional to β0C
(2)
L,g and β0C

(2)
L,q. In Sec. 2.4 we will demonstrate how the differences

between the LO and NLO kernels become apparent in the scale evolution of F2,L(x,Q2).
Figure 5 compares the LO and NLO off-diagonal kernels K2L and KL2 for {FA, FB} =

{F2, FL/(asC
(1)
L,q)} and {F2, FL/(asC

(1)
L,g)}. The most noticeable difference is the strong rise with

n for the kernelKL2 governing the evolution of {F2, FL/(asC
(1)
L,g)}. At LO accuracy, this is readily

understood by inspecting the n → ∞ limit which yields, see Eq. (41) in [22], K
(0)
L2 ∼ n lnn,

recalling that asymptotically C
(1)
L,q ∼ 1/n, C

(1)
L,g ∼ 1/n2, P

(0)
qq ∼ lnn, P

(0)
qg ∼ 1/n, P

(0)
gq ∼ 1/n,

and P
(0)
gq ∼ lnn. The NLO kernel KL2 exhibits an even stronger rise with n. In the same way

one obtains, for instance, that K
(0)
L2 governing the evolution of {F2, FL/(asC

(1)
L,q)} only grows like

lnn, see Eq. (14).
Despite this peculiar n dependence and the differences between the singlet kernels shown

in Fig. 5, both sets of observables, {F2, FL/(asC
(1)
L,q)} and {F2, FL/(asC

(1)
L,g)} can be used

interchangeably in an analysis at LO and NLO accuracy. Results for the QCD scale evolution
are identical, and one does not encounter any numerical instabilities related to the inverse Mellin
transform, which we perform along a contour as described in Ref. [23]. In fact, it is easy to see
that the eigenvalues

λ± =
1

2

[
K

(0)
22 +K

(0)
LL ±

√
(K

(0)
22 −K

(0)
LL)2+ 4K

(0)
2LK

(0)
L2

]
, (15)
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which appear when solving the matrix valued evolution equation (9), are identical for both sets
of kernels and also agree with the corresponding eigenvalues for the matrix of singlet anomalous

dimensions P
(0)
kl ; see also the discussions in Sec. 2.4

2.3. Example II: F2 and dF2/dt
Of future phenomenological interest could be also the pair of observables {F2, dF2/dt}, in
particular, in the absence of precise data for FL. Determining experimentally the t or Q2

slope of F2 is, of course, also challenging.
Defining FD ≡ dF2/dt, we obtain the following physical evolution kernels

K
(0)
22 = 0 , K

(0)
2D = 2 ,

K
(0)
D2 =

1

2

[
P (0)
gq P

(0)
qg − P (0)

gg P
(0)
qq

]
,

K
(0)

2D = P (0)
gg + P (0)

qq (16)

at LO to be used in Eq. (9); for NLO kernels see [18]. The kernels KAB in (16) exhibit more
moderate higher order corrections, mainly through terms proportional to β0,1, than those listed
in Sec. 2.2. This shall become apparent in the next Section when we discuss results for the scale
dependence of both {F2, dF2/dt} and {F2, FL}.

2.4. Numerical Studies
In this Section we apply the methodology based on physical anomalous dimensions as outlined
above and compare with the results obtained in the conventional framework of scale-dependent
quark and gluon densities and coefficient functions. Due to the lack of precise enough data
for FL or dF2/dt we will adopt the following realistic “toy” initial conditions for the standard
DGLAP evolution of PDFs at a scale Q0 =

√
2 GeV [23]

xuv(x,Q
2
0) = 5.1072x0.8 (1− x)3,

xdv(x,Q
2
0) = 3.06432x0.8 (1− x)4,

xū(x,Q2
0) = (1− x)x d̄(x,Q2

0),

xd̄(x,Q2
0) = 0.1939875x−0.1 (1− x)5,

xs̄(x,Q2
0) = 0.2x [ū(x,Q2

0) + d̄(x,Q2
0)],

xg(x,Q2
0) = 1.7x−0.1 (1− x)5. (17)

for all our numerical studies. The value of the strong coupling αs at Q0 is taken to be 0.35.
For our purposes we can ignore the complications due to heavy flavor thresholds and set nf = 3
throughout. We use this set of PDFs to compute the flavor singlet parts of F2, FL, and dF2/dt
at the input scale Q0 using Eq. (11). For studies of DIS in the small x region, say x . 10−3,
in which we are mainly interested in, the flavor singlet parts are expected to dominate over NS
contributions and, hence, shall be a good proxy for the full DIS structure functions. Results
at scales Q > Q0 are obtained by either solving the RGEs for PDFs or by evolving the input
structure functions directly adopting Eq. (9). For the solution in terms of PDFs we adopt from
now on the standard choice µ = Q.

For completeness and to facilitate the discussions below, let us quickly review the solution
of the matrix-valued RGEs such as Eqs. (5) and (9). While one can truncate the QCD beta
function and the anomalous dimensions consistently at any given order in as, there exists no
unique solution to beyond the LO accuracy. The matrix-valued nature of (9) only allows for
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iterations around the LO solution, which at order aks can differ in various ways by formally
higher-order terms of O(al>ks ).

To this end, we employ the standard truncated solution in Mellin moment space, which can
be found, for instance, in Ref. [24], see also [23], and reads

Γi(n,Q) = Li(n, as, a0)Γi(n,Q0) (18)

where the evolution operator up to NLO is defined as

Li(n, as, a0) = L
(0)
i (n, as, a0) + L

(1)
i (n, as, a0) (19)

with

L
(0)
i (n, as, a0) =

(
as
a0

)−λ−
β0

e− + (+)↔ (−)

L
(1)
i (n, as, a0) =

(
as
a0

)−λ−
β0

[
(a0 − as)e−R(1)

i e−

−

a0 − as
(
as
a0

)λ−−λ+
β0

β0
e−R

(1)
i e+

λ+ − λ− − β0

]
+ (+)↔ (−) . (20)

Here, a0 = as(Q0), ΓP =
(

Σ
g

)
, and ΓK =

(
FA
FB

)
, i.e., the index i = P refers to the coupled RGE

for the quark singlet and gluon and i = K to the RGE for the pair {FA, FB} of DIS structure
functions in (9). For i = K one has(

R
(0)
K

)
AB

=
1

β0
K

(0)
AB ,

(
R

(1)
K

)
AB

=
1

β0
K

(1)
AB −

β1

β2
0

K
(0)
AB , (21)

with a corresponding definition for i = P in terms of the 2 × 2 matrices of singlet splitting
functions P (0) and P (1). λ± denote the eigenvalues given in Eq. (15) and e± the projection
operators onto the corresponding eigenspaces; see Refs. [23, 24].

As has been mentioned already at the end of Sec. 2.2, the eigenvalues λ±(n) are identical
when computed for the kernels KAB and Pkl. This in turn implies that as long as, say, F2

and FL are calculated at µ = Q0 with LO accuracy, their scale evolution based on physical
anomalous dimensions reproduces exactly the conventional results obtained with the help of
scale-dependent PDFs.

Figure 6 shows our results for the scale dependence of the DIS structure functions F2 and FL.
The input functions at Q0 =

√
2 GeV are shown as dotted lines. While LO results are identical,

starting from NLO accuracy the comparison between the two methods of scale evolution becomes
more subtle, and results seemingly differ significantly as can be inferred from the middle panels
of Fig. 6.

The origin of the differences between F2,L(x,Q2) computed based on Wilson coefficients
and scale-dependent PDFs and physical anomalous dimensions can be readily understood from
terms which are formally beyond NLO accuracy. For instance, upon inserting the NLO Wilson
coefficients (4) and the truncated NLO solution (18)-(20) into Eq. (11), F2 at O(as) contains
spurious terms of both O(a0as) and O(a2

s). Since FL starts one order higher in as, similar terms
are less important here. On the other hand, when we evolve F2,L with the help of physical
anomalous dimensions we first compute, due to the lack of data, the input at a0 based on
Eq. (11), which then enters the RGE solution (18)-(20). Again, this leads to terms beyond
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Figure 6. Scale dependence of the DIS structure functions F2 (left) and FL (right) at NLO
accuracy obtained with physical anomalous dimensions (dash-dotted lines) and in the standard
way through a convolution of PDFs and Wilson coefficients (solid lines). The dashed and dotted
lines show the results obtained at LO accuracy and the input at Q = Q0 =

√
2 GeV, respectively.

The middle panels give the ratios of the two different methods to evolve F2,L at NLO, and the
lower panels illustrate the size of NLO corrections when physical anomalous dimensions are
being used; see text.

NLO. In case of F2 they are now of the order O(a0as) and O(a2
0), i.e., even more relevant than

in case of PDFs since a0 > as.
To test if the entire difference between the two evolution methods shown in Fig. 6 is caused

by these formally higher order contributions, one can easily remove all O(a2
s), O(a0as), and

O(a2
0) contributions from our results. Indeed, the scale evolution based on physical anomalous

dimensions and the calculation of F2,L from PDFs then yields exactly the same results also at
NLO accuracy. We note that this way of computing properly truncated physical observables
from scale-dependent PDFs beyond the LO accuracy has been put forward some time ago in
Ref. [28, 29] but was not pursued any further in practical calculation.

Another interesting aspect to notice from Fig. 6 are the sizable NLO corrections illustrated
in lower panels, in particular, for F2 in the small x region. For this comparison, LO results
refer to the same input structure functions F2,L as used to obtain the NLO results but now

evolved at LO accuracy, i.e., by truncating the evolution operator in Eqs. (18)-(20) at L
(0)
K . At

first sight the large corrections appear to be surprising given that global PDF fits in general
lead to acceptable fits of DIS data even at LO accuracy [13]. However, this is usually achieved
by exploiting the freedom to have different sets of PDFs at LO and, say, NLO accuracy. The
framework based on physical anomalous dimensions does not provide this option as the input
for the scale evolution is, in principle, fully determined by experimental data, and only the value
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for the strong coupling can be adjusted at any given order. In this sense it provides a much more
stringent test of the underlying framework and perhaps a better sensitivity to, for instance, the
possible presence of non-linear effects to the scale evolution in the kinematic regime dominated
by small x gluons.
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Figure 7. Same as in Fig. 7 but now for the pair of observables F2 and FD ≡ dF2/dt.

In Fig. 7 we show the corresponding results for the scale dependence of the DIS structure
function F2 and its slope FD = dF2/dt. Again, any differences between the scale evolution
performed with physical anomalous dimensions and based on PDFs are caused by formally
higher order terms O(a2

s), O(a0as), and O(a2
0), which can be removed with the same recipe as

above. As for {F2, FL}, NLO corrections are sizable in the small x region due to numerically

large contributions to K
(1)
D2 and K

(1)
DD from the QCD beta function.

2.5. Summary
We have presented a phenomenological study of the QCD scale evolution of deep-inelastic
structure functions within the framework of physical anomalous dimensions. The method is
free of ambiguities from choosing a specific factorization scheme and scale as it does not require
the introduction of parton distribution functions. Explicit results for the physical evolution
kernels needed to evolve the structure functions F2, its Q2 slope, and FL have been presented
up to next-to-leading order accuracy.

It was shown that any differences with results obtained in the conventional framework of scale-
dependent quark and gluon densities can be attributed to the truncation of the perturbative
series at a given order in the strong coupling. At next-to-leading order accuracy the numerical
impact of these formally higher order terms is far from being negligible but, if desired, such
contributions can be systematically removed.
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A particular strength of performing the QCD scale evolution based on physical anomalous
dimensions rather than auxiliary quantities such as parton densities is that the required initial
conditions are completely fixed by data and cannot be tuned freely in each order of perturbation
theory. Apart from a possible adjustment of the strong coupling, this leads to easily testable
predictions for the scale dependence of structure functions and also clearly exposes the relevance
of higher order QCD corrections in describing deep-inelastic scattering data. Next-to-leading
order corrections have been demonstrated to be numerically sizable, which is not too surprising
given that the physical evolution kernels absorb all known large higher order QCD corrections
to the hard scattering Wilson coefficients.

Once high precision deep-inelastic scattering data from future electron-ion colliders become
available, an interesting application of our results will be to unambiguously quantify the size
and relevance of non-linear saturation effects caused by an abundance of gluons with small
momentum fractions. To this end, one needs to observe deviations from the scale evolution
governed by the physical anomalous dimensions discussed in this work. The method of physical
anomalous dimensions can be also used for a theoretically clean extraction of the strong coupling
and is readily generalized to other processes such polarized deep-inelastic scattering or inclusive
one-hadron production.

3. F2 and FL at small x using collinearly-improved BFKL resummation
3.1. Structure functions within the BFKL framework
At small x and center-of-mass energy s = Q2/x, we can apply high energy factorization and
write the structure functions FI , I = 2, L as

FI(x,Q
2) =

∫
d2q⊥
π q2

∫
d2p⊥
π p2

ΦI

(
q,Q2

)
ΦP

(
p,Q2

0

)
F (x, q, p) . (22)

where q ≡
√

q2
⊥) . ΦP is the non-perturbative proton impact factor which we model using

ΦP

(
p,Q2

0

)
=

C
Γ(δ)

(
p2

Q2
0

)δ
e
− p2

Q2
0 , (23)

where we have introduced two free parameters and a normalization. ΦI is the impact factor
associated to the photon which we treat at leading-order (LO), i.e.∫

d2q⊥
πq2

ΦI

(
q,Q2

)( q2

Q2

)γ−1

=
αs(µ

2)

2π

nf∑
q=1

e2
q cI(ν) , (24)

where

cI(ν) ≡ π2

4

ΩI(ν)

(ν + ν3)
sech(πν) tanh (πν) (25)

ν = i(1/2 − γ), Ω2 = (11 + 12ν2)/8, ΩL = ν2 + 1/4, and the strong coupling αs is fixed at the
renormalization scale µ2. In the present work we will also use the kinematically improved impact
factors proposed in [30, 31], which include part of the higher order corrections by considering
exact gluon kinematics. Its implementation requires to replace the functions cI(ν) by c̃I(γ, ω)
where

c̃L(γ, ω) =
4Γ(γ+ξ+1)Γ(1+γ)

[
(ψ(γ+ξ)− ψ(γ))

(
3ω2 − ξ2 + 1

)
− 6ωξ

]
ξΓ(1 + ω)(ξ4 − 5ξ2 + 4)

(26)
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and c̃2 = c̃L + c̃T , with

c̃T (γ, ω) =
Γ(γ+ξ)Γ(γ)

ξΓ(1+ω)(ξ4 − 5ξ2 + 4)

{
− 2ξω

(
ξ2 + 32 + 6ω + 11

)
+
[
ψ(γ + ξ)− ψ(γ)

][
ξ4 − 10ξ2 + 3ω2

(
ω2 + 2ω + 4

)
− 2ω

(
ξ2−1

)
+ 9
]}
. (27)

ψ(γ) is the logarithmic derivative of the Euler Gamma function and ξ = 1− 2γ + ω, while ω is
the Mellin variable conjugate to x in the definition of the gluon Green function F , see Eq. (28)
below. The main difference between these impact factors is that the LO ones roughly double
the value of their kinematically improved counterparts in the region with small |ν|, while being
very similar for |ν| ≥ 1.

The gluon Green function can be written in the form

F (x, q, p) =
1

π

∫
dω

2πi

∫
dγ

2πi

1

q2

(
q2

p2

)γ
x−ω

1

ω − ᾱsK̂ (γ)
, (28)

with ᾱs = αsNc/π. The collinearly improved BFKL kernel as introduced in eq. (28) is an
operator consisting of a diagonal (scale invariant) piece χ̂(γ) with eigenvalue

χ(γ) = ᾱsχ0(γ) + ᾱ2
sχ1(γ)− 1

2
ᾱ2
sχ0
′(γ)χ0(γ) + χRG(ᾱs, γ, a, b) , (29)

where χ0(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ), a = 5
12

β0
Nc
− 13

36
nf
N3
c
− 55

36 and b = −1
8
β0
Nc
− nf

6N3
c
− 11

12 , plus

a term χ̂RC(γ) proportional to β0 which contains the running coupling corrections of the NLO
kernel [32]:

χ̂RC(γ) = ᾱ2
s

β0

8Nc

(
χ0(γ)

−→
∂ γ −

←−
∂ γχ0(γ) + 2 log(µ2)

)
. (30)

The precise form of the NLO kernel χ1 can be found in [19, 33]. The resummation of collinear
logarithms of order ᾱ3

s and beyond is realized by the term [19,34,35]

χRG(ᾱs, γ, a, b) = ᾱs(1 + aᾱs) (ψ(γ)− ψ(γ − bᾱs))

− ᾱ
2
s

2
ψ′′(1− γ)− bᾱ2

s

π2

sin2 (πγ)
+

1

2

∞∑
m=0

(
γ − 1−m+ bᾱs

−2ᾱs(1 + aᾱs)

1− γ +m
+
√

(γ − 1−m+ bᾱs)2 + 4ᾱs(1 + aᾱs)

)
. (31)

Our final expression for the structure functions reads

FI(x,Q
2)∝

∫
dν x−χ( 1

2
+iν)Γ

(
δ − 1

2
− iν

)[
1 +

ᾱ2
sβ0χ0

(
1
2 + iν

)
8Nc

log

(
1

x

)
(32)

×
(
i(πcoth(πν)− 2π tanh (πν)−MI(ν))− ψ

(
δ − 1

2
− iν

))](
Q2

Q2
0

) 1
2

+iν

cI(ν),

where M2 and ML can be found in [19]. For the kinematical improved version of FI we replace
cI(ν) by c̃I(1/2 + iν, χ(1/2 + iν)).
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In Eq. (33) the scale of the running of the coupling has been set to µ2 = QQ0. Building
on the work of [36] we found in [19] that in order to obtain a good description of the Q2

dependence of the effective intercept of F2, λ, for x < 10−2, it is very useful to operate with non-
Abelian physical renormalization schemes using the Brodsky-Lepage-Mackenzie (BLM) optimal
scale setting [37] with the momentum space (MOM) physical renormalization scheme [38]. For
technical details on our precise implementation we refer the reader to [19] (see also [39] for a
review on the subject and [40] for a related work). More qualitatively, in these schemes the
pieces of the NLO BFKL kernel proportional to β0 are absorbed in a new definition of the
running coupling in order to remove the infrared renormalon ambiguity. Once this is done, the
residual scheme dependence in this framework is very small. We also found it convenient [19]
to introduce, in order to describe the data with small Q2, an analytic parametrization of the
running coupling in the infrared proposed in [41].

3.2. Comparison to DIS experimental data
In the following we compare our results with the experimental data for F2 and FL. Let us
first compare the result obtained in [19] for the logarithmic derivative d logF2/d log(1/x) using
Eq. (33) with a LO photon impact factor and our new calculation using the kinematically
improved one. In Fig. 8 we present our results with the values of our best fits for both types
of impact factors and compare them with the H1-ZEUS combined data [12] for x < 10−2.
The values of the parameters defining the proton impact factor in (23) and the position of the
(regularized) Landau pole (we use nf = 4) for the strong coupling are δ = 8.4, Q0 = 0.28 GeV,
Λ = 0.21 GeV for the LO order case and δ = 6.5, Q0 = 0.28 GeV, Λ = 0.21 GeV for the
kinematically improved (note that the normalization C does not contribute to this quantity).

1 5 10 50 100
0.1

0.2

0.3

0.4

0.5

Q²�GeV²

Λ

Figure 8. Fit to λ for F2 with the LO photon impact factor (solid line) and the kinematically
improved one (dashed line). The data set has been extracted from [12].

The LO impact factor generates lower values than the kinematically improved one in the high
Q2 region and slightly higher ones when Q2 . 2 GeV2. It is interesting to see how the approach
presented here allows for a good description of the data in a very wide range of Q2, not only for
high values, where the experimental uncertainties are larger, but also in the non-perturbative
regions due to our treatment of the running of the coupling.
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Encouraged by these positive results we now turn to investigate more differential distributions.
We select data with fixed values of x and compare the Q2 dependence of our theoretical
predictions with them, now fixing the normalization for the LO impact factor to C = 1.50
and 2.39 for the kinematically improved. Our results are presented in Fig. 9. The equivalent
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Figure 9. Study of the dependence of F2(x,Q2) on Q2 using the LO photon impact factor
(solid lines) and the kinematically improved one (dashed lines). Q2 runs from 1.2 to 200 GeV2.

comparison to data, this time fixing Q2 and looking into the evolution in the x variable, is shown
in Fig. 10. We observe that our predictions give a very accurate description of the data for both
types of impact factors.

Let us remark that the values for the parameters in this fit are in syntony with the theoretical
expectations for the proton impact factor since Q0 is very similar to the confinement scale and
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Figure 10. Study of the dependence of F2(x,Q2) on x using the LO photon impact factor
(solid lines) and the kinematically improved one (dashed lines). Q2 runs from 1.2 to 120 GeV2.

the value of δ sets the maximal contribution from the impact factor also in that region. This is
reasonable given that the proton has a large transverse size.

The longitudinal structure function is an interesting observable which is very sensitive to the
gluon content of the proton. We will now present our predictions for FL using the best values
for the parameters previously obtained in the fit of F2. We will see that the agreement with
the data is very good. First, Q2 is fixed and the x dependence is investigated in Fig. 11. The
experimental data have been taken from [43]. To present the Q2 dependence it is convenient to
calculate, for each bin in Q2, the average value of x, see Fig. 12. In some sense this is a similar
plot to the one previously presented for λ in the F2 analysis and we can see that the effect of
using different types of impact factors is to generate a global shift in the normalization. Again
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we note that we have an accurate description of the transition from high to low Q2, which was
one of the main targets of our work.
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Figure 11. Fit to FL with the LO photon impact factor (solid lines) and the improved one
(dashed lines). The experimental data are taken from [43].

3.3. Predictions for future colliders
While our predictions for the structure functions are in agreement with the data from the HERA
collider experiments H1 and ZEUS, these observables are too inclusive to provide unambiguous
evidence for BFKL evolution (for other recent studies in this context see [42]). Comparable in
quality fits can be obtained by both DGLAP evolution and saturation models, see e.g. [43, 44].
In order to distinguish among different parton evolution pictures new collider experiments are
needed, such as the proposed Electron-Ion-Collider (EIC) at BNL/JLab (USA) [1] and the Large
Hadron Electron Collider (LHeC) at CERN (Switzerland) [45], which will be able to measure
both F2 and FL at unprecedented small values of Bjorken x. In Fig. 13 we present two studies
with our predictions for F2 and FL down to values of x = 10−6.
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3.4. Conclusions
We have presented an application of the BFKL resummation program to the description of the
x and Q2 dependence of structure functions as extracted from Deep Inelastic Scattering data
at HERA. We have also provided some predictions for these observables at future colliders. In
order to obtain the correct dependence on the virtuality of the photon at high values of the
scattering energy, we have included in the BFKL kernel the main collinear contributions to all
orders. We have also used optimal renormalization and an analytic running coupling in the
infrared in order to accurately describe the regions of low Q2.

4. Summary
DIS scattering experiments allow to explore the proton in terms of its QCD content, i.e., quarks
and gluons. At small values of x, the description in terms of linear DGLAP evolution and
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parton distribution functions is expected to break down and non-linear effects, associated with
high gluon densities, are believed to set in. To pin down such effects in DIS, new collider
experiments are needed, which allow to measure both structure functions F2 and FL with high
accuracy for both electron-proton and electron-nucleus scattering. DGLAP evolution formulated
in terms of physical evolution kernels allows for a direct evolution of structure function doublets.
Apart from removing scale- and scheme dependence in the description of structure functions, it
further reduces the number of free parameters, used in the parametrization of non-perturbative
initial conditions. BFKL evolution describes on the other hand directly evolution in x and hence
drives the system into the non-linear regime, promising higher sensitivity to non-linear effects.
Being less explored than DGLAP evolution, we took a first step towards such applications by
confronting BFKL evolution with the combined HERA data. In particular we demonstrated that
NLO BFKL evolution is capable to describe the combined HERA data, if the NLO BFKL kernel
is supplemented with collinear resummation and optimal scale setting for the QCD running
coupling is used.
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