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Abstract. This paper presents LALPC, a prototype high-level synthesis tool, specialized in
hardware generation for loop-intensive code segments. As demonstrated in a previous work,
the underlying hardware components target by LALPC are highly specialized for loop pipeline
execution, resulting in efficient implementations, both in terms of performance and resources
usage (silicon area). LALPC extends the functionality of a previous tool by using a subset of
the C language as input code to describe computations, improving the usability and potential
acceptance of the technique among developers. LALPC also enhances parallelism exploitation
by applying loop unrolling, and providing support for automatic generation and scheduling of
parallel memory accesses. The combination of using the C language to automate the process
of hardware design, with an efficient underlying scheme to support loop pipelining, constitutes
the main goal and contribution of the work described in this paper. Experimental results have
shown the effectiveness of those techniques to enhance performance, and also exemplifies how
some of the LALPC compiler features may support performance-resources trade-off analysis
tasks.

1. Introduction
Nowadays, reconfigurable computing, in particular modern FPGAs (Field-Programmable Gate
Arrays), can be considered a good platform for the development of highly parallel systems
with low power consumption. Many hybrid architectures adopt software to execute large code
sections, and hardware accelerators to run performance critical sections of a given application.
Due to software code reuse, this approach is able to increase performance while improving
productivity in the development process [1].

In embedded systems, the hardware/software combination is usually tightly coupled, either
using a reconfigurable soft-core processor in the device itself, or via devices and kits that combine
FPGAs and a processor. In this context, it is worth mentioning some contemporary solutions
such as Xilinx Zynq FPGA family [2], which includes ARM cores hardwired, and Altera/Intel
DE2i-150 kit [3], which interconnects an Atom processor with a Cyclone IV FPGA through a
PCIe bus. Several recent studies report the use of FPGAs to accelerate applications, such as [4],
and many others presented in [5].
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Despite the potential for high performance gains and power savings, reconfigurable computing
is still considered by many designers as a hardware solution requiring long development times.
This limitation is of particular concern for the adoption of hybrid architectures relying on FPGA
accelerators. HLS (High-Level Synthesis) tools – used to convert more abstract descriptions
directly into circuits – have been proposed since the 90s, in an attempt to facilitate hardware
development, bringing it closer to software developers. After more than 20 years of steady
progress, more mature tools have emerged, and those have become almost a necessity for the
following reasons: i) need for rapid design space exploration from functional specifications; ii)
high complexity of current devices, requiring a higher level of abstraction for large projects; iii)
need for improved productivity by means of components reusing; iv) need for accurate system-
level verification; v) increasing adoption of accelerators and heterogeneous SoCs (System-on-
Chips) [6].

Several challenges face the design of a HLS tool. Besides the goal of delivering RTL (Register-
Transfer Level) circuits as efficient as possible regarding aspects such as area, performance, and
energy consumption, the input language is determinant for the tool adoption and effective use.
One of the approaches presented in Section 2 is LALP (Language for Aggressive Loop Pipelining),
a scheme aimed to generate hardware accelerators targeting the optimization of software loops.
The technique relies on a special purpose language, and underlying hardware model specially
designed to optimize the execution of pipelined loops [7].

Experimental results using LALP techniques have shown promising results in terms of time
and area, which has motivated further developments to improve the way computations are
specified by a system’s designer: instead of using the special purpose language, the framework
has been extended to use the C Language, allowing for easier translation of software algorithms
into hardware structures. The use of C language is a desirables feature as most algorithms
of interest for embedded systems have well tested reference implementations described in
that language. The LALPC (C-based Language for Aggressive Loop Pipelining) compiler
infrastructure presented in this paper extends the functionality of LALP not only in terms
of the input language, but also in the strategies used to increase parallelism exploitation [8].
Besides loop pipelining, automatic loop unrolling and parallel memory access are extensively
used whenever possible, and thus improving overall performance results. By doing so, LALPC
improves the tool usability and acceptance through the use of C language, while still retaining
the area and time advantages of the underlying hardware scheme supporting loop pipelining.
The combination of those two features constitutes the main contribution of this work, which has
shown promising results when compared against some current similar state-of-the-art tools.

The remaining sections of this paper are organized as follows: Section 2 presents some related
works. In Section 3 the LALPC compiler infrastructure and its main features are described,
followed by some experimental results in Section 4. Section 5 brings some final remarks regarding
the work presented in this paper.

2. Related Work
Several high-level synthesis tools have been proposed recently using various approaches, which
shows the growing interest in automatic generation of hardware for reconfigurable devices [9].
Among others, some notable academic works are Spark [10], Haydn-C [11], ROCCC [12], and
MATISSE [13]. Commercial tools have also matured, and a number of them are currently
offered, such as Altera SDK for OpenCL, Xilinx Vivado, Calypto Catapult, Synopsys Synphony
C, Cadence C-to-Silicon, ImpulseC and Cynthesizer. Metamodeling has also being exploited for
system level design [14], where hardware and software are represented in a common environment.
Such approach allows a hardware synthesis tool to use several information from the entire system
in order to meet requirements.

An interesting alternative is ReflectC, a high-level synthesis tool with a focus on improving
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flexibility during the design process [15]. ReflectC can be used in conjunction with LARA [16],
a special purpose aspect-oriented programming language. LARA has been designed for code
instrumentation, controlling the application of code transformations and compiler optimizations.
The language allows developers to capture non-functional requirements from applications in
a structured way, while still keeping the original application source-code. By doing so, it
enables effective application and control of the different tools available in the high-level synthesis
toolchain, taking into account domain and target-specific aspects. This strategy improves the
efficiency and coverage of the design-space exploration process, and ultimately may expose
additional opportunities for hardware-software partitioning.

LegUp [17] is an open source project that has received considerable attention from the
scientific community. The tool focus is on high-level synthesis using the C language as input.
The C code is automatically compiled, and corresponding hardware structures are generated,
described in Verilog HDL (Hardware Description Language). LegUp uses as front-end the LLVM
compiler [18], which also performs the initial steps of analysis and optimization for further
synthesis. LegUp implements a new back-end in order to target a hardware platform [17]. The
tool can synthesize a substantial part of the C language, supporting various structure types,
such as multidimensional arrays, global variables, pointers, and even floating-point values. The
hardware generated by the LegUp tool has comparable quality to those generated by some
available commercial tools for high-level synthesis [19]. In addition, it allows the integration of
various accelerators with programs described in OpenMP and Pthreads [20].

The LALP compiler adopts a focused approach to high-level synthesis, aiming to optimize
algorithms relying on time critical loops [7]. The basis of this approach is called ALP (Aggressive
Loop Pipelining), a hardware scheme which adapts some of the ideas proposed in [21] for
execution in FPGA platforms. However, instead of a data-driven scheme, the ALP technique
attempts to achieve the maximum throughput by using counters to furnish the iteration space
in loops, and shift-registers to synchronize operations [22]. By doing so, it avoids the need of a
centralized control based on finite state machines, a key difference from traditional approaches
to loop pipelining. In the ALP scheme, operations in the loop body are executed at clock cycles
according to the paths taken during execution, and optimal loop pipelining can be achieved,
without performance losses due to an FSM controller.

The LALP tool allows design space exploration through marking directives in the code.
These directives are used to control the exact clock cycle of operations, generating different
architectures for the same input code. Another important feature is that the LALP compiler
uses a specific language for describing the algorithm. The LALP language has a higher level
of abstraction when compared to VHDL and Verilog languages. The results obtained for this
domain may be very efficient, as demonstrated in [23], however, the use of a special purpose
language limits its use since it implies a learning curve for any developer wishing to use it.

Considering that the LALPC tool presented in this paper was built upon ALP, a specialized
hardware scheme offering time and area gains for loop execution over some other existing
tools [22], it can be argued that LALPC keeps this advantage over similar HLS tools. The
support for C language input extends LALPC applicability, and so its chances of outperforming
existing HLS tools for loop optimizations.

3. LALPC Compiler
The LALPC compiler presented in this paper extends LALP to support the C language as input,
and also employs new strategies for parallelism exploitation. As already pointed out, one of the
main changes in relation to the LALP compiler is the use of C language as input for describing
computations. This has been accomplished by using the ROSE compiler [24] as part of the
overall LALPC compilation flow (Figure 1).

As a prototype implementation, LALPC allows for a limited subset of C language, although
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sufficient for testing purposes with representative application codes. In addition to sequential
constructs, it is possible to use the following constructions of the C language: regular (for) loops,
block and ternary conditional checks, arithmetic and logic operations, accumulators, arrays, bit
shifts. Some notable limitations include float data types, function calls, structs, pointers, multi-
dimensional arrays, and recursion. Such limitations are due to the current capabilities of the
LALPC back-end, some of them usually found in other HLS tools (e.g. float data types, function
calls).

The LALPC compiler targets the same VHDL components library used in LALP [25]. This
hardware library is optimized for loop pipelining execution, a performance oriented feature at
the core of the system. The generated VHDL code can be synthesized both in Altera and Xilinx
tools.

The compiler allows using markup directives to guide the tool during the hardware generation
process. These markup directives are described as pragmas inserted in the code, which are them
handled by the compiler. By varying some parameters through the use of pragmas, it is possible
to generate different architectures with specific features for the same input source code. With
pragmas, the programmer can apply hardware customizations based on knowledge from a high
abstraction level of implementation details. Pragmas also controls the use of other features
aiming to improve parallelism exploitation, in particular loop unrolling, and the use of multi-
port memories for simultaneous array accesses. The use of pragmas in LALPC compiler is
described in details in Section 3.2.

The previous LALP tool required the programmer to use directives to control the timing of
operations. This manual synchronization ensures that the scheduling process will always run
properly. Although the LALPC compiler still supports the use of manual synchronization (by
using pragmas), it is no longer a requirement. By relying on the more robust analysis passes and
intermediate representation provided by the ROSE compiler, it is possible for the framework
to infer valid synchronized sequences of operations. All tests conducted in this study showed
the correctness of this automatic approach, however, it does not implies on a formal compiler
validation at this stage.

3.1. Compiler Structure
The LALPC instantiates parts of the ROSE compiler to validate the input code in C language
and to apply some optimization techniques. After this step, an intermediate representation,
built in the form of an AST (Abstract Syntax Tree) with the intermediate representation of the
code is obtained. This representation is used to generate the necessary hardware components,
and to define the data and control connections among them.

The ROSE compiler is capable of performing a number of analyses and optimizations in the
input code. Of particular interest is the code representation in Static Single Assignment (SSA)
form, making unique every assignment to a variable. This optimization eases the hardware
generation process, a step manually performed for the previous compiler.

Some pragmas are handled directly by the ROSE compiler front-end, which are reflected in
the AST representation (e.g. loop unrolling). Others are dealt with by the hardware-oriented
back-end (e.g. operations bit-width). After creating the signals among components, the compiler
performs the scheduling and balancing steps [26]. Finally, the VHDL compiler generates files
with the components and their connections. Figure 1 shows the structure of the compiler, which
also outputs auxiliary internal compiler representations for a visualization tool (Graphviz).

3.2. Pragmas
High-level synthesis tools (both research and commercially oriented) usually have limitations
arising from differences between the paradigms of software and hardware development. Software
programming languages aim to map a given problem in a well-defined general-purpose
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Figure 1: The LALPC Compiler Structure

architecture. The construction of a custom hardware architecture for a given problem may
take into consideration different parameters, since there is no fixed bounding to previously
defined functional units, memory hierarchy and so on. These differences may lead the synthesis
tool to generate architectures that require a large amount of hardware resources. Code
restructuring and/or fine tuning of hardware generation parameters is often a strategy for
mitigating undesirable effects.

Programming directives via pragmas is intended to allow the programmer to define some
specific characteristics during the build process. The use of pragmas modifies the hardware
generated by the compiler, which can result in different architectures. For the same input code,
not only different performance levels may be obtained, but significant variations in resources
usage and power consumption in the adopted reconfigurable device. The use of pragmas is also
justified by the existing features and limitations in C when used for hardware specification.

To represent the different paradigms between the software described in C language and
hardware architectures, consider, for example, the need to specify a function with multiple
outputs. In the LALPC compiler it is possible to set pragmas that indicates which variables
may have output pins in their respective registers.

The pragmas currently treated by the LALPC compiler are described below:

• #pragma alp bit – defines a boolean (single bit) register, since the C language does not
have a data type for this. This pragma is useful to define control signals, preventing wider
variables being used for this purpose.

• #pragma alp data width – defines the bit width used by the VHDL components. This
program can be used to increase or decrease the field of representation of numbers according
to the need, providing a space-saving mechanism. The VHDL component library is fully
parameterized in terms of bit width, the compiler can then instantiate components with
the width specified in this pragma.

• #pragma alp delay – controls clock cycles of hardware components, allowing manual
synchronization of operations. This feature can be used to improve the circuit’s operating
frequency (e.g. putting additional registers), which enables the retiming in synthesis tool.

• #pragma alp multiport – checks for multiple memory accesses, and generates custom
multiport RAM modules. This feature is explained in more detail below.

• #pragma alp out – creates output pins in VHDL components, typically used to facilitate
data analysis and the generation of blocks with multiple outputs. The execution of a
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function in software is temporal, resulting in a value at the end of all steps. In hardware –
with spatial execution in pipeline – a block can simultaneously calculate several iterations.
This pragma can then be used to extract intermediate values of the computation, which
can be useful in other parts of the algorithm.

• #pragma alp unroll – used to apply the loop unrolling optimization, resulting in
performance gains for application codes based on loop-critical sections, as can be seen
below. The handling of this pragma is delegated to the ROSE compiler, invoking a method
that works directly in its intermediate representation.

3.3. Parallelism Exploitation
The multiport and unroll pragmas are used to apply optimization techniques to speed up the
execution speed of applications. However, its use may also affects the amount of resources
allocated in the reconfigurable device, as can be seen below. For this reason, a level of design
space exploration may be required to balance performance and resources utilization.

3.3.1. #pragma alp multiport Most of today’s FPGAs have dual port memories internally.
This pragma generates a RAM component with multiple ports, allowing simultaneous read
access. Write parallel access are limited to a factor of two. This improves the final performance
of the application in many cases: serial array access only constrained by memory ports can be
overcame by the use of multiport memory banks, allowing for parallel access. The generation of
these memories is delegated to the synthesis tool and is beyond the scope of this paper. To have
more control over the process that could be treated with techniques such as those described in
the literature [27, 28, 29].

3.3.2. #pragma alp unroll The use of the #pragma alp unroll instructs the compiler
to analyse the operations within the loop, trying to identify dependencies between them. If
dependencies permit, the compiler duplicates internal components of the loop, enabling more
than one iteration to be executed in parallel. The result is a significant gain in the application
processing when compared with the sequential version. On the other hand, the process of
replicating internal operations increases the amount of used resources in the reconfigurable
device, a growth proportional to the number of operations contained in the loop.

As an example, Figure 2a aims to exemplify the use of this pragma: line 4 specifies that,
if possible, an unroll factor of two should be applied to the loop body. Figure 2b shows the
resulting code generated by the ROSE compiler (in high-level language, for clarity purposes).
This new structure becomes the intermediate representation that will be used by the LALPC
back-end, and correponding generation of hardware components.

1 void vecsum () {

2 int i, x[N], y[N], z[N];

3 #pragma alp multiport

4 #pragma alp unroll 2

5 for (i = 0; i < N; i++)

6 z[i] = x[i] + y[i];

7 }

(a) Initial code.

1 void vecsum () {

2 int i, x[N], y[N], z[N];

3 for (i = 0; i < N; i+=2) {

4 z[i] = x[i] + y[i];

5 z[i+1] = x[i+1] + y[i+1];

6 }

7 }

(b) Resulting code.

Figure 2: Example of loop unrolling provided by ROSE compiler
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It can be seen that line 5 was generated from line 4, but with different access to the memories,
which allows parallel processing of two iterations for each clock cycle.

Also in this example, when applying the unroll pragma the compiler generates more
simultaneous accesses to the memories, being represented by the indexes “i” and “i+1” of the
vectors. In this way it is possible to combine the pragma multiport for simultaneous access to
this memory. Line 3 on Figure 2a contains the pragma that indicates to the LALPC compiler
customize the memories when simultaneous accesses are found, regardless of reading or writing.

The combination of the two above pragmas increases significantly the performance in many
applications, compared to the sequential processing. It is worth to note that the use of such
features is an option when the developer needs to meet project requirements. Section 4 presents
some experimental results showing the impact of using these pragmas in terms of performance
and resources usage.

4. Experimental Results
Some experimental results were conducted in order to evaluate the hardware generated by the
LALPC compiler. This work focused on performance and resources usage, comparing the results
against the previous LALP compiler, and also against the LegUp compiler. Although all selected
benchmarks rely heavily on loops, they present different characteristics in terms of size of the
loop body, pattern and frequency of memory access, and data dependences. All benchmarks use
32-bit integers, unless stated. The benchmarks used for this work are:

• Accumulator algorithm [17] - 10 loop iterations;

• ADPCM encoder/decoder audio algorithms [30] - 1024 loop iterations;

• Sobel image processing algorithm [31] - 78 loop iterations;

• Dotprod, Max and Vecsum algorithms used in DSPs [32] - 2048 loop iterations;

The synthesis tool used was Quartus II 13.0.0 Web Edition (64-bit) targeting Altera
EP4CGX150DF31C7 Cyclone IV GX Family reconfigurable device (FPGA). Terasic DE2i-150
board was used as a platform both for software and hardware tests. Software results were adopted
as a baseline implementation, a reasonable choice when porting software implementations to
hardware platforms. The software execution was performed on a Intel Atom Dual Core Processor
N2600, with a 1MB cache and running at 1.6GHz. The adoption of the Atom microprocessor
was due to its tight integration to the FPGA development board used for the hardware
implementations presented in this work. Considering that this processor is offered as part
of a commercial hardware-software hybrid solution, it can be argued that it is a representative
microprocessor of a hypothetical software-only embedded system. In all tests performed for this
work, only implementation with one thread of execution were employed.

Software performance figures were obtained with perf-stat tool running on Yocto 3.0.32
and Poky 1.3.2 reference system which is based on GCC 4.7.2. The raw data obtained for
performance and hardware resources usage are showed in Table 1, and further discussed in the
next subsections.

4.1. Performance
The data presented in Figure 3 compares the normalized execution times for all benchmarks
running on three hardware architectures and on one microprocessor for the software
implementation. As expected LALPC and LALP results are very similar, as they target the
same underlying hardware components, highly specialized to loop pipelining execution. This is
also the very reason why LALPC outperforms LegUp for the selected benchmarks. However,
this advantage should not be expected in general implementations.
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Table 1: Hardware resources usage and execution time for software platform (Intel Atom), and
hardware implementations generated by LegUp, LALP and LALPC.

Benchmark
Platform
Compiler

Logic
Elements

Comb Reg
Memory
(Bits)

Execution
Time(us)

Software – – – – 13.31
Accumulator LEGUP 658 564 541 640 0.44

LALP 163 109 138 512 0.11
LALPC 159 109 139 512 0.10
Software – – – – 17.48

ADPCM LEGUP 1067 995 661 36128 172.10
Coder LALP 800 638 37 40960 79.72

LALPC 986 673 837 41460 119.30
Software – – – – 16.90

ADPCM LEGUP 1049 913 683 52512 95.97
Decoder LALP 507 388 464 41090 16.61

LALPC 628 420 574 41248 39.00
Software – – – – 43.79

Dotprod LEGUP 852 696 590 131072 152,09
LALP 95 81 65 131072 28.92
LALPC 118 102 82 131072 28.50
Software – – – – 38.55

Max LegUP 294 272 234 65356 31.46
LALP 66 47 62 65356 12.79
LALPC 94 75 84 65356 12.89
Software – – – – 24.06

Sobel LEGUP 1266 1156 820 6400 4.16
LALP 797 683 504 8269 5.67
LALPC 1158 754 991 8435 4.40
Software – – – – 43.92

Vecsum LEGUP 891 788 551 196608 117.85
LALP 101 53 67 196608 18.95
LALPC 124 74 83 196608 17.20

Although for most benchmarks there are modest performance gains when moving from LALP
to LALPC, it is worth noting that this can be accomplished with much less development
effort, since algorithms can be coded using C language in LALPC, without the need of explicit
synchronization parameters. In LALP, ADPCM implementations were modified to achieve
greater parallelism, severely altering the order of operations in the code. In LALPC version
we prefer to keep the unmodified code to make a fair comparison with LegUp.

As seen in Table 1, most hardware implementations result in clearly better performance when
compared to the software platform. The noticeable exception is the ADPCM coder algorithm.
That is explained by the algorithm characteristics, which have data dependences preventing
the use of loop pipeline optimizations. That results in a quasi-sequential execution at a much
lower clock rate in the hardware platform, when compared to the 1.6 GHz Atom processor. The
obtained results for the software implementations are the mean value based on five runs for each
benchmark, presented within a 95% confidence interval.
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Figure 3: Comparison between normalized execution times for all implementations.

4.2. Speedup
For four benchmarks, the data in Table 2 shows the results obtained using optimization pragmas
in terms of execution time and speedup, comparing all there compilers: LALPC, LALP, and
LegUp. LALPC acheived an average speedup over LALP of 4.7x, and 10.6x when compared to
LegUp. Those results demonstrated the effectiveness of the optimization techniques implemented
in this work, for the selected benchmarks. However, the performance gain is usually obtained
at the expense of additional hardware resources, as will be shown in the next sections. This
observation leads to the need of trade-off analysis, shown in Sections 4.4 and 4.5.

Table 2: Speedup obtained using optimization pragmas.

Benchmark
Time

LALPC (us)
Time

LALP (us)
Speedup

Time
LegUp (us)

Speedup

Accumulator 0.05 0.11 2.2 0.44 8.8
Dotprod 3.95 28.92 7.3 152.09 38.5
Sobel 0.45 5.67 12.6 4.16 9.2
Vecsum 9.73 18.95 1.9 117.85 12.1

4.3. Hardware Resources Usage
It can be observed in Table 1 that, in general, LegUp architectures requires more logic elements
as it relies more heavily on Finite State Machines (FSMs), as opposed to LALPC and LALP. As
for internal memories, most resources usage are similar, apart from those for the accumulator
benchmark, which employs flip-flops instead of memories, in LALPC and LALP. Those two
compilers always generate memory capacity (in number of words) as a power of 2, while LegUp
is able to generate memories of arbitrary sizes. That can be clearly observed for the Sobel
benchmark. LegUp instantiates memories using an IP core from Altera, while LALPC and
LALP generates custom memories in VHDL.
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As shown in Figure 4 (using a logaritmic scale) hardware implementations generated by
LALPC are similar to those generated by LALP, in terms of hardware resources usage. This
aspect was evaluated in terms of number of logical elements, combinational functions, logic
registers, and memory bits. However, the results for both compilers are not identical, explained
by the use of a new front-end and additional code transformations performed by the ROSE
compiler. As already observed for the performance results, LALPC compares favourably against
LegUp for the benchmarks used in this study. The most likely reason is again the specialized
hardware components targeted by LALPC, an effect unlikely to appear for application codes
not relying on loops.
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4.4. Design Space Exploration: Sobel
The use of pragmas has been already mentioned as a mechanism to help the designer in the
task of fine tuning the compiler output, allowing for an easy exploration of some solution points
trying to find an adequate balance between performance and hardware resources usage. In order
to demonstrate the effective of this LALPC compiler feature, the Sobel benchmark was used.
The Sobel benchmark was chosen due to some of its characteristics, it permits tests with the
pragmas separately. One of the characteristics of interest of the algorithm is that it performs,
for each loop iteration, 8 read accesses in the input vector, and a single write in the output
vector after those data are processed. A number of hardware implementations were generated
for the same input code, only varying the use of pragmas to control the level of optimizations
employed.

In order to perform 8 read access to the RAM memory, a multiplexer is used to schedule the
access to distinct addresses, making the reading step fully sequential. This process requires 8
cycles to read the pixels from memory for each iteration of the repeating loop. By using the
pragma multiport, the compiler is able to replace the single port RAM memory module by a
RAM memory with 8-read and 8-write ports. By using this customization, all read accesses
are executed in a single cycle, and thus allowing a significant performance gain. However, this
parallelism is achieve at high cost in terms of resources, since the actual implementation consists
of 4 dual-port memories, with replicated input data.
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Another optimization possible in this example is loop unrolling, because there are no
dependencies within the repeating loop. By combining this optimization with the multiport
pragma, the resulting hardware ensures a further performance gain, although at the expense
of additional hardware resources. This combination doubles all existing operations within the
loop kernel, generating 16 simultaneous accesses to the memory module containing the input
image, and other two write accesses in the output memory. Unrolling a loop body increases the
complexity of logic circuits as some of the data used in computations are moved from memory
to internal registers. That causes a reduction in the number of employed memory bits, and an
increase in the use of logic elements.

This performance-hardware trade-off can is graphically presented in Figure 5.
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Figure 5: Sobel Design Space Exploration: Resources vs Execution Time

Another evaluation easy performed by using the pragmas is the impact resulting from varying
the memory and operations bit-width employed by the resulting architecture (Figure 6).
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Those experiments exemplify the potential of the optimization techniques implemented in
LALPC compiler. However, it is worth noticing that they also may affect the amount of resources
required for the hardware synthesis, and could make it infeasible depending in case of limited
resources in the reconfigurable device adopted for a given project.

4.5. Design Space Exploration: Accumulator, Vecsum, Dotprod
After completion of the initial tests for the evaluation of pragmas with the Sobel benchmark,
new tests were performed with some of the other benchmarks mentioned above. However,
applications that have intra-iteration loop dependences do not benefit from the unroll pragma.
Because of that, some benchmarks of the list were not considered in this analysis. As shown
in Figure 7, the same results pattern observe for Sobel were observed for the Accumulator,
Vecsum, and Dotprod benchmarks: a steady improvement in performance resulting from the
use of loop unrolling and parallel memory accesses, at the expense of additional hardware
resources. Although this result is expected, it should be noticed that the LALPC compiler
allows a quantitative evaluation of all design points with little modifications in the source code.
The results for the accumulator benchmark show little variation in resources usage, but also little
performance gains, which is due to a small number of loop iterations in the code. Execution
time is halved for Vecsum, but it does not scale very well (exponential), as all data are moved
to registers. Dotprod relies on resource replication but without increasing the use of memory,
resulting in linear scaling for resources usage.
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Time
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5. Conclusion
This work has presented the LALPC compiler, a high-level synthesis tool, which was built as
an extension of an existing tool (LALP). From the user’s point of view, the main advantage in
relation to the previous tool is the use of C language as input code to describe computations.
LALPC also supports the use of pragmas to guide the hardware generation process, and to
enable some optimizations such as loop unrolling, and parallel memory access. It has been
demonstrated that those features can be useful support time-area trade-off analyses during the
development process. The combination of using C language with an efficient hardware scheme
supporting loop pipelining constitutes the main contribution of this work.

Although allowing only a subset of the full C language specification, the LALPC compiler
was able to generate efficient implementations for some loop-oriented kernel benchmarks. Those
results compare favourably against those obtained using the LegUp compiler, although we
acknowledge this can be achieve only for loop intensive code segments. It is also worth noticing
that LegUp supports a broader C language subset, which obviously increases its applicability
when compared to LALPC. Nevertheless, the results obtained in this work suggests that the
specialized techniques employed by LALPC have the potential to be further improved, or
incorporated as a specialized feature targeting loops on other existing HLS tools.
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