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Abstract. We have proposed the effective Lagrangian density for the skyrmion-like solitons
around the filling factor ν ∼ 1, and have introduced the massless gauge field (Goldstone mode)
induced by the hedgehog-like solitons. We have discussed the skyrmion glassy behaviour.

1. Introduction
From field theory method [1,2], a new type of topological excitation, Skyrmion, is predicted to
occur around filling factor, 1/m, with odd integer m. Charged excitations in the quantum
Hall ferromagnet are skyrmions. A skyrmion is a spin texture, rotating several spins
simultaneously, and electric charge ±e/m. A fractional charge excitation is possible, because
it is a coherent excitation. A skyrmion is a topological soliton spread over two energy levels.
Skyrmion excitations can be detected experimentally by measuring their spin. An experimental
measurement [3] of the spin polarization has been made around ν = 1. The spin polarization
is observed both for ν ≥ 1 and for ν ≤ 1. It is a clear signal of skyrmion excitations. Recently
the present author has proposed that in quasi-2 + 1 dimensional quantum antiferromagnet the
doped hole induces magnetic-disordered hedgehog-like soliton, which is composed of the doped
hole and the cloud of SU(2) Yang-Mills fields with the spin disorder around the hole, by using the
gauge-invariant effective Lagrangian with spontaneous symmetry breaking [4-7]. In this study,
extending the theoretical formula, we introduce the gauge-invariant effective Lagrangian density
for the skyrmions around the filling factor = 1, and present the massless gauge field (Goldstone
mode) induced by the Skyrmion. The massless gauge field introduces the long-range interaction,
which will play an important role in the Skyrme crystal [8]. Taking into account the correlation
effect among hedgehog-like solitons, we will discuss the mechanism of the long relaxation of the
skyrmion-like soliton dynamics. In addition, we suggest the presence of the skyrmion glass.

2. A model system
The size of the hedgehog-like soliton is determined by a competition between Coulomb energy
and the Zeeman energy. That is, when charge is spread over a wider domain of radius ∼ RC ,
the energy becomes smaller. On the other hand, the number of reversed spins is decreased, as
increased the Zeeman energy. Taking account of that a hedgehog-like soliton in planar geometry
is similar to the O(3) nonlinear sigma model (the SU(2) excitation) [1], we think that the
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perturbing gauge fields Aa
µ introduced by the hedgehog-like soliton have a local SU(2) symmetry.

Furthermore, it is assumed that SU(2) gauge fields Aa
µ are spontaneously broken through the

Anderson-Higgs mechanism in a way similar to the breaking of the quantum hall ferromagnetic
symmetry around the hedgehog-like soliton. We set the symmetry breaking ⟨0|ϕa|0⟩ = ⟨0, 0, µ⟩
of the Bose field ϕa in the Lagrangian density as follows,
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In order to introduce the hedgehog-like soliton with a size, RC , we add the fourth term in
Eq.(1), which depends on the Zeeman energy and Coulomb energy. ĵ corresponds to the
direction of the external magnetic field. When the soliton is formed, we set the symmetry
breaking ⟨0|ϕa|0⟩ = ⟨0, 0, µ⟩. On the other hand, when the anti-soliton is formed, we set the
symmetry breaking ⟨0|ϕa|0⟩ = ⟨0, 0,−µ⟩. Then, we can obtain the effective Lagrangian density,
Leff , at small introducing of hedgehog-like solitons around the filling factor ν = 1. The value,
µ = ⟨0|ϕ3|0⟩, of the symmetry breaking depends strongly on the Zeeman energy and the Coulomb
energy. That is, when the Zeeman energy becomes large, the value of µ becomes larger. On the
other hand, when the Coulomb energy become larger, the value of µ becomes smaller.
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where Sj is the spin parameter, m1 = µ · g4, and m2 = 2(2)1/2λ · µ. The effective Lagrangian
describes two massive vector fields A1

µ and A2
µ, and one massless U(1) gauge field A3

µ. Because
masses of A1

µ and A2
µ are formed through the Higgs mechanism by introducing the hedgehog-

like soliton, the fields A1
µ and A2

µ exist around the hedgehog-like soliton within the length of
∼ 1/m2 ≡ RC . From the first term in Eq.(2), the spin component parallel to ĵ, which corresponds
to the direction of the external magnetic field, is induced strongly around the hedgehog-like
soliton. The density ρĵ for the spin component parallel to ĵ around the hedgehog-like soliton is
given approximately by

ρĵ(r) ∼
1
π

R2
C[
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] (3)

For the effective gyromagnetic ratio, g, ≪ 1, the size, RC ∼ 1/m1, of the hedgehog-like soliton
is estimated by Sondhi et al. [2] as(

RC

l

)3

∝ l

a
(g | | ln g|)−1 (4)
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where l and a are the Landau length and Bohr radius, respectively. Now we can define the
topological number q for excited hedgehog-like solitons as follows,

q =
1
2π

∫∑ dSµν

(
∂µA3

ν − ∂νA
3
µ

)
, (5)

where
∑

is a sphere, whose radius is larger than RC ∼ 1/m2. If a sphere
∑

surrounds completely
one soliton, whose center position is ri, the value of qi is +1. If a sphere

∑
surrounds completely

one anti-soliton, whose center position is ri, the value of qi is −1. When the hedgehog-like soliton
is located at the position ri and |r − ri| ≪ 1/m2 ∼ RC is assumed, the Goldstone gauge field
A3

µ(r, ri) at the position r is represented as A3
µ(r, ri) ∝ qi/|r − ri|. Thus we can introduce

the interaction, which is mediated by the massless gauge field (Goldstone mode), between the
hedgehog-like solitons at positions ri and rj as Vij ∝ qi ·qj/|ri−rj |, which plays an important role
in the Skyrme crystal [8]. It has been suggested [9,10] that the effect of disorder is important
on the ground state of a two-dimensional electron gas in the quantum Hall regime at filling
factors slightly deviating from unity. This suggests strongly that the aggregation of hedgehog-
like solitons is mulch related to the long relaxation time of the spin. In addition, stripe-shaped
magnetic domains has been observed [11] . The stripe-shape of the domain means that long-
range frustration plays an important role on the domain formation [12] . In order to discuss
the spin dynamics, we envisage an effective hamiltonian, H, for the hedgehog-like soliton, O(rĩ),
which is introduced in eq.(2),

H = −J
∑
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Sĩ·j̃
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+
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|rĩ − rj̃ |

(6)

with J > K > 0 and the first sum taken only over nearest neighbor(the distance between each
magnetic soliton is ≤ 2Rc) and the second taken over all pair(̃i ̸= j̃ means |rĩ − rj̃ | ≫ 2Rc).

Sĩ ≡
∑

i∈πR2
c

Si. That is, Sĩ is the summation of the ferromagnetic spin, Si, within ∼ πR2
c (̃i)

around the hedgehog-like soliton at the site rĩ. Sĩ represents the effective spin of the soliton
O(rĩ). The first term corresponds to short-range ferromagnetic ordering interaction and the
second corresponds to long-range frustration. If g3 in eq.(2) is assumed to be equal to

√
π/K,

where K is the long-range interaction constant in the effective Hamiltonian, eq.(9). Taking into
account this model along lines originally suggested by Chayes et al. [13], there are two emergent
length scales that are long compared to Rc. The first of these is the correlation length ξ0 which
governs the fluctuations in the absence of frustration. The second length, L0 ∝ ξ−1

0 · K− 1
2 ,

structure is broken up due to frustration, i.e. the frustration-limited domain size [14]. The
characteristic length ξ0 and L0 are dependence on temperature and number of hedgehog-like
solitons. If O(rĩ) is the local order parameter for the ferromagnetic soliton, this means that

< O(rĩ) · O(rj̃) >∝ Rc|rĩ − rj̃ |
−1 exp[−|rĩ − rj̃ |/ξ0]

+m2

for ξ0 ≪ |rĩ − rj̃ | ≪ L0,

< O(rĩ · O(rj̃) >∝ L0m
2|rĩ − rj̃ |

−1 exp[−|rĩ − rj̃ |/L0]
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for L0 ≪ |rĩ− rj̃ |, where m is the expectation value of the local order parameter. Then we write
the free energy F of the ferromagnetic domain of characteristic size L as

F = δL2 − ϕL3 + S(L)L3.

The coefficient ϕ is a measure of the free energy density gained by aggregation of the hedgehog-
like solitons. The domain-wall surface tension δ ∝ (ξ0)−2 is positive. The strain coefficient S(L)
is ∼ S0L

2 for L small compared to the radius of curvature of the ideal space. The relaxation
of a local order parameter in a finite system occurs most efficiently through the creation and
movement of defect walls. The creation of such a defect wall is proportional to δL2. In this
system, domains are special because reduction in the range of the local order parameter reduces
the strain. So we expect the collective activation free energy, Ecol(L) ∝ δL2 − mS0L

5.
Now, we shall consider the long relaxation time, which can be described in terms of

a normalized relaxation function, f(t), for which f(0) = 1. The collective behavior can
be described in terms of domains with a size distribution ρ(L) and a most probable size,
L = L0 ≫ Rc. We introduce the relaxation function within each domain as exponential with a
decay-time dependent upon an activation free energy Ecol(L) [15] as follows,

f(t) =
∫ ∞

0
dLL2ρ(L) exp{−(t/τ∞) exp[−Ecol(L)/T ]},

(7)

where τ∞ is taken to be a T -independent parameter.

3. Conclusion
We have introduced the gauge-invariant effective Lagrangian density for the skyrmion-like
solitons around the filling factor ν ∼ 1 and have introduced the massless gauge field(Goldstone
modes). We have discussed the mechanism of the long relaxation of skyrmion-like solitons.
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