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Abstract. A hydrodynamic model describing the electron transport in silicon carbide
semiconductors, coupled with the heating of the crystal lattice is presented. It has been obtained
by taking the moments of the coupled Boltzmann equations for the electrons and phonons, and
by using the Maximum Entropy Principle in order to determine the transport coefficients and
the constitutive equations. Simulation results in the bulk case are shown.

1. Introduction
Power semiconductor devices have attracted increasing attention as key components in a variety
of power conversion units. Because of the mature technology of Si power devices currently
employed in most applications, it is now difficult to achieve innovative breakthroughs in this
field. Newly emerging semiconductors such as Silicon Carbide (SiC) are attractive for advanced
power devices, owing to their superior physical properties such as their exceptional wide bandgap
(three times more than Si), a high thermal conductivity (twice or triple that of Si), and a very
high field breakdown (five times more than Si). Although these performances are very promising,
SiC devices may suffer from severe self-heating effects which impose a limitation on both the
output power and the power density of the devices. Self heating results in a higher lattice
temperature in the transistor channel which can significantly deteriorate the current-voltage
characteristics because of the reduction in the device parameters such as mobility and electron
saturation velocity. For these reasons, electro-thermal simulations are mandatory in order to
predict the behaviour of such devices.

If we want to go beyond the drift-diffusion equation scheme, valid in the linear irreversible
thermodynamic regime, it is mandatory to explore the microscopic details of self-heating process.

The natural framework to deal with electro-thermal transport is given by a set of Boltzmann-
like equations (called Bloch-Boltzmann-Peierls equation, hereafter BBP) which describe, from
the kinetic point of view, the transport of electrons and phonons, coupled to the Poisson equation
[1]. To solve numerically this system is an hard task, because it forms a set of partial integro-
differential equations. One possibility is to develop, for such material, an Electro-thermal Monte
Carlo (ETMC) scheme at expenses of huge computational efforts [2-11]. Another alternative is
to take the moments of the BBPs obtaining a set of hydrodynamic-like equations. The main
drawback is how to model the constitutive equations for the higher-order moments (i.e. the
fluxes) as well as for the production terms, i.e., moments of the collisional operator. These
problems have successfully been tackled for Si by means of the Maximum Entropy Principle
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(hereafter MEP) of extended thermodynamics [12]. Such an approach has successfully been
used for simulating the electron transport [13—18] and the electro-thermal one in silicon devices
[19-22]. Constructing such macroscopic model for SiC is the main aim of the present paper.

2. The Extended Hydrodynamic model

Over 200 crystal varieties of SiC, which are different by their atomic arrangement, are known.
The 4H-SiC has a hexagonal lattice, and we have considered the valleys around the minima at
the symmetry point M of the two lowest conduction bands. Due to the crystal symmetries,
for each conduction band there are three equivalent valleys [23]. Then, for each of the two
conduction bands, a Boltzmann-like kinetic equation for the unknown distribution function f4
must be considered. The phonon branches which mainly contribute to the transport phenomena
in 4H-SiC are the polar and non-polar optical ones (in the Einstein approximation) and the
acoustic one (in the Debye approximation). Again, for each n-th phonon branch, a Boltzmann-
like kinetic equation for the unknown distribution function g, must be added.

The BBP equations for phonons and electrons are coupled by the respective collisional
operators, which depend on the scattering mechanisms. Here we have considered the electron
scattering with ionized impurities (intravalley, Brooks and Herring model), acoustic (intravalley,
elastic approximation), polar optical (intravalley, inelastic) and non-polar optical (intervalley,
inelastic) phonons. The main complicacy introduced in such material is due to the intervalley
scattering, which leaves the electron into a different valley after the collision with a phonon.

By multiplying the BBP kinetic equation describing the electron flow by suitable weight
functions, one can obtain balance equations for the macroscopic quantities associated to the
electron flow (called moments) in the A-th valley [24]
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where na, Vi, Wa, Sy are the electron density, average velocity, average energy and average
energy-flux respectively, and C,,,, C'%/A, Cw,, C’ng the corresponding productions; U} and F7/
are the higher-order fluxes, and E; the electric field. Similarly, one obtains the balance equations
for the phonons
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where v is the sound velocity, Wy, Wp, W), are the energy densities for the acoustic, polar
optical, non-polar optical phonons respectively, P, P,, P, the corresponding productions, and
Q' the acoustic phonon energy-flux density. In the above system of PDEs, we have to determine
the higher-order fluxes (i.e., UY, F{, N“) as well as the production terms (i.e., the right-hand-
side). According to the Maximum Entropy Principle, if a certain number of moments is known,
then the distribution functions which can be used for evaluating the unknown moments are
those that extremize the entropy functional, under the constraint that those functions reproduce
the known moments. By performing a suitable expansion around the thermal equilibrium, we
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obtain a hyperbolic system of PDEs, where the higher-order fluxes and the production terms
are determined functions of the moments na, Vi, WY, S4, Wy, W, Wae, Q°. We observe that, in
this scheme, no Fourier law relating the electron/phonon heat flow to the temperature gradient
has been invoked because the energy-fluxes S%, Q" are considered as new variables.

3. The bulk case
The bulk case is represented by a SiC semiconductor with a uniform doping. If homogeneous
initial conditions are taken, the above moment system reduces to a system of ordinary differential
equations with the time as the only independent variable, and an electric field frozen into the
sample. The parameters used in the simulation have been taken form [23]. For the initial
conditions, we have taken the corresponding equilibrium values. In figure 1 we plot the electron
density for the two conduction bands versus the simulation time, for an electric field of 450
kV/em. The inversion of two electron populations begins at long times. In figure 2 we plot the
electron velocity for the two conduction bands and their average (weighed with their densities).
The velocity overshoot phenomenon is clearly observed. Finally, in figures 3, 4 the average
electron energies and phonon temperatures are shown, respectively. The lattice temperature
is defined as Ty, = (cocTac + cpTp + cyTh)/(cac + ¢p + ¢,) Where cqe, ¢p, ¢, are the volumetric
specific heat for the respective phonon branches. Since the (bulk) semiconductor is supposed
to be infinite without any boundary condition, and the lattice is not considered as a thermal
reservoir, the heat produced by Joule effect inside the device cannot be dissipated and we
expect a general overheating of the sample. The overheating of the sample has been predicted
as function of the simulation time, and the contribution to the heat transport of the different
phonon branches has been highlighted. The figure 4 shows a significant variation of the lattice
temperature for a simulation time of ~ 100 ps. Since the transfer of energy from the electrons
to phonons occurs in a time scale of ~ 0.3 ps., the energy transfer from the electrons to phonons
can be assumed to occur instantaneously, when compared to the heat transport time scale. For
this reason, in the simulation, one can use for the phonon flow a time step 100 times larger than
the time step used for solving the electron flow (1)-(3), saving CPU time.

The simulation of real devices, where hot electron effects can play an important role in the
energy dissipation phenomenon, using this hydrodynamic model will be the subject of the next
researches.
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Figure 1. The electron density for Figure 2. The electron velocity for

the 1st, 2nd conduction band versus the the 1st, 2nd conduction band versus the
simulation time. simulation time, and their average.
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Figure 3. The electron energy for the Figure 4. The phonon temperatures
1st, 2nd conduction band versus the versus the simulation time, and the
simulation time, and their average. lattice temperature T7..
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