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Abstract. We investigate the time-dependent response of an interacting mesoscopic capacitor
using the Floquet-Green function formalism applied to a single-level Anderson model. We obtain
closed expressions for the current and the occupation valid for arbitrary values of the applied ac
potential in the limit of small frequencies. In the noninteracting case, we obtain nonsinusoidal
responses when the ac amplitude allows crossings between the dot level and the Fermi energy
of the attached reservoir. For interacting electrons treated within the Hartree approximation,
we self-consistently calculate the capacitor current as a function of time and find a decrease of
the peak amplitudes due to the on-site Coulomb repulsion.

1. Introduction
Electron dynamics in phase-coherent conductors yield a universal value of the charge
relaxation resistance for single-channel capacitors and small ac amplitudes, independently of
the transmission probability [1, 2]. When the ac amplitude applied to the capacitor is large such
that the dot level crosses the reservoir Fermi energy, Fève et al. found [3] that during the first
(second) half-cycle of the voltage pulse the capacitor emits (absorbs) one electron. The resulting
quantized current in terms of the elementary charge e has immediate applications for metrology
and quantum computation and is crucial, in general, for the electronic manipulation of quantum
conductors in real time.

Since quantum dots are small cavities, adding extra electrons causes electron-electron
repulsion to become a major issue. The relation between electronic interactions and time-
dependent transport in quantum capacitance-resistance circuits has been investigated in a
number of works [4, 5, 6, 7, 8, 9]. However, most of these works assume that the pulse amplitude
is small. Interestingly, Ref. [10] has formulated a scattering theory for arbitrary pulse strengths
valid for noninteracting electrons and fast electron sources. It is the aim of this work to consider
both electron-electron interactions and large amplitude voltages in order to investigate the role
of interaction effects in the time-dependent current of quantum capacitors coupled to ac fields.

We propose an Anderson model for a single level in the vicinity of a gate that generates the
oscillating ac voltage. The current is expressed in terms of the dot Green’s function. We first
address the noninteracting case and then Coulomb interactions are treated within the Hartree
approximation. We find that the dot occupation becomes a nonsinusoidal (but periodic) function
of time for high ac amplitudes. Correspondingly, the current peaks increase as the ac amplitude
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Figure 1. Sketch of a mesoscopic capacitor.
A single-level quantum dot with energy εd
and Coulomb interaction U is connected
via one lead to an electron reservoir of
Fermi energy EF . In addition, the
dot is capacitively coupled to a harmonic
modulation εac(t).

is enhanced. In the presence of Coulomb interactions, the mean occupation decreases as the
interaction strength increases due to repulsion effects and the current peaks thus shrink.

2. Theoretical Model
We consider a mesoscopic capacitor formed with an ac-gated quantum dot that can exchange
carriers through a constriction with a coupled electron reservoir (see Fig. 1). In our case, the
dot has a single energy level and we take into account the electron-electron interactions via the
on-site charging energy U . Thus, our time-dependent Hamiltonian reads

H =
∑
kσ

εkσC
†
kσCkσ +

∑
kσ

(
V ∗k d

†
σCkσ + VkC

†
kσdσ

)
+
∑
σ

ε̃σ(t)d†σdσ + Un↑n↓ . (1)

The first term in the right-hand side describes noninteracting electrons in the reservoir and
the second term represents the coupling between localized and conduction electrons with tunnel
strength Vk. Here, σ = {↑, ↓} labels the spin state. In the third term of Eq. (1), ε̃σ(t) = εσ+εac(t)
is the energy level driven by the ac monochromatic potential εac(t) = εac cos Ωt with εac the ac
amplitude and Ω the frequency. In the following, we assume spin degeneration and ε↑ = ε↓ ≡ εd.
Finally, the fourth term takes into account the on-site Coulomb repulsion with nσ = d†σdσ the
number operator for dot electrons.

The time-dependent current is given by the rate of change in time for the occupation expected
value, I(t) = e∂t

∑
σ 〈nσ〉 (t) = e∂t

∑
σ

∫
dεG<σ,σ(t, ε)/(2πi), where G<(t, ε) is the lesser Green’s

function in the mixed energy-time representation [11], which is obtained from the definition
G<(t, t′) = i〈d†(t′)d(t)〉 and the relation G<(t, t′) =

∫
dεe−iε(t−t

′)G<(t, ε)/(2π). Then, our
problem is reduced to finding the dot occupation. We are interested in an expansion up to
leading order in Ω:

I(t) = I(1)(t) + . . . = e∂t
∑
σ

(
<nfσ> (t) + . . .

)
(2)

where the indices f (frozen) and (1) indicate zero and first order in Ω, respectively. The frozen
term corresponds to a stationary problem with time-dependent parameters [12].

2.1. Noninteracting case
Let us first consider noninteracting electrons (U = 0). After lengthy but straightforward algebra,
we find

<nfσ> (t) =

∫
dεf(ε)Dσ(t, ε) (3)

I(1)(t) = −e
∑
σ

∫
dε (−∂εf(ε)) (∂tεac(t))Dσ(t, ε) (4)
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Figure 2. Time-dependent current up to
leading order in the ac frequency as a func-
tion of Ωt for different values of the pulse
amplitude εac. The frozen dot occupation
per spin is shown in the inset as a function of
time for the same values of εac. Parameters:
εd = 2Γ and kBT = 0.

where Dσ(t, ε) = Γ/
[
π
(
(ε− εσ − εac(t))2 + Γ2

)]
is the instantaneous density of states for the

coupled dot with Γ = 2π
∑

kσ |Vk|2δ(ε − εkσ) the broadening due to hybridization. The Fermi
distribution is f(ε) = (1 + exp [(ε− EF )/kBT ])−1, where the Fermi energy EF = 0 is set as the
reference energy and T is the temperature. Time is measured in units of 1/Ω such that current
is given in terms of eΩ.

We show in the inset of Fig. 2 the dot occupation per spin, 〈nf 〉 ≡ 〈nf↑〉 = 〈nf↓〉, as a function
of Ωt for different values of εac and a fixed position of the energy level. In the frozen regime, the
electronic potential is instantaneously adjusted to the variation of the ac field. As a consequence,
〈nf 〉 attains its maximum value when Ωt = π + 2πm (m = 0, 1, . . .). For small ac amplitudes
(black full line) the response is sinusoidal, as expected. For larger amplitudes, during the first
half-cycle of the pulse the occupation increases (an electron is absorbed) whereas during the
second half-cycle the occupation decreases (an electron is emitted). This effect is more visible
for increasing values of εac, which allow εd to cross over EF . Interestingly, the modulation of
〈nf 〉(t) becomes nonsinusoidal for high values εac (blue dot-dashed line). The main panel of
Fig. 2 presents the current to first order in the ac frequency. For small pulses the current is
nearly zero. Larger amplitudes generate current peaks (dips) during the absorption (emission)
part of the process. As εac increases, the current pulses become narrower and more separated.
Between pulses the occupation remains roughly constant and the current is close to zero.

2.2. Interacting electrons
Now we take into account the Coulomb interaction (U 6= 0). For metallic dots with good
screening properties, it is a valid approximation to consider the Hartree approach, which

amounts to decoupling higher-order correlators in the following way: � dσ, d
†
σnσ̄ � (t, t′) ≈

Gσ,σ(t, t′) 〈nσ̄〉 (t′). Hence, the equation of motion for the Green’s function can be exactly solved.
We find that both the frozen dot occupation and the current to first order in Ω take the same

form as in Eqs. (3) and (4) but replacing εac(t) with εac(t) + U <nfσ̄> (t). As a consequence,
Eq. (3) becomes a self-consistency equation for 〈nf 〉 and the dot occupation has to be solved
iteratively.

The inset of Fig. 3 shows the results of our numerical evaluations for the frozen occupation in
the Hartree approximation at a fixed value of the dot level varying the interaction strength. We
keep the ac amplitude with a large value (εac = 5Γ). We observe that the peak maxima decrease
while the minima stay constant when U increases. We attribute this behavior to a repulsion
effect that hampers the process of emission and absorption of electrons since an extra energy is
to be paid in order to populate the dot. This implies that the current peaks are significantly
lower than in the noninteracting case (see main panel of Fig. 3). Our results suggest that
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Figure 3. Time-dependent current in
Hartree approximation versus time for
different values of the Coulomb interaction
strength U . In the inset, we plot the frozen
dot occupation per spin (also in Hartree
approximatioin) as a function of Ωt for
the same values of U as in the main plot.
Parameters: εd = 2Γ, εac = 5Γ and kBT = 0.

mean-field interactions can be understood as an effective ac potential with a lowered amplitude.
Elucidating this effect further will be subject of a future work.

3. Conclusions
We have investigated the dynamical response of a single-level quantum dot attached to a reservoir
and in the presence of an external ac potential of arbitrary amplitude. We have described the
current and occupation behavior in the adiabatic limit (small ac frequencies) using a mixed
energy-time Green’s function formalism applied to an Anderson Hamiltonian model. We have
found strong effects of the electron-electron interactions that lower the amplitude of the current
peaks. This result is important in view of recent advances that propose mesoscopic capacitors as
useful resources for metrology due to the quantization of the ac current. Further work is needed
to study higher-order currents beyond the adiabatic limit [10], stronger electronic correlations
(Kondo limit) [5, 8] or the role of temperature driven potentials in thermoelectric setups [13].
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