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Abstract. Employing as prototypical systems the metallic single-walled carbon nanotubes
(SWNTs), we investigate the electronic propagation in Carbon-based materials, showing that
their linear electronic spectra protect the spatial shape of electronic wavepackets from phonon-
induced diffusion, up to micrometric scale already at room temperature. To this end, we
employ a recently proposed nonlinear Lindblad-based density-matrix approach, which allows
us to account for the interplay between phase coherence and dissipation/decoherence, avoiding
both huge computational costs of non-Markovian approaches or the limitations of oversimplified
dephasing models.

Nowadays, a quite fascinating challenge in nanotechnology is to control the dynamics of
electron waves as accurately as in optics.[1] To this purpose, Carbon-based materials such as
graphene[2, 3] or metallic single-walled carbon nanotubes (SWNTs)[4] are optimal candidates
for dispersionless electronic propagations, thanks to their linear electronic spectra where the
Fermi velocity vF ∼ 106 m/s replaces the speed of light c for photons. In particular, metallic
SWNTs can be regarded as the one-dimensional electron waveguides that can in principle
provide an electronic alternative to photon-based quantum information processing, as they are
synthesized with high accuracy [4, 5, 6]. Although scattering with vacancies or defects can
be fairly neglected at first, any implementation in realistic devices requires to determine the
impact of electron-phonon processes, which are indicated by experiments as the main source of
scattering at intermediate and room temperature [7, 8]. Here, along the lines of recent results [9],
we investigate their impact by employing a recently developed density-matrix approach, which
enables us to account for both energy dissipation and decoherence effects.[10] We demonstrate
that, while in semiconducting SWNTs an electronic wavepacket spreads already for a scattering-
free propagation, in metallic SWNTs its shape is essentially unaltered, even in the presence of
electron-phonon coupling. Differently from predictions based on the conventional relaxation-time
approximation (RTA), our results thus indicate metallic SWNTs as a realistic electron-based
platform for information transfer.

In the neighborhood of K and K’ valleys, the free-electron states belonging to the lowest
energy subband may be labelled by α = (k, b, v, ν), where k denotes the continuous wavevector
component along the SWNT axis, b = ±1 and v = ±1 stands respectively for conduction/valence
band and for K/K’ valley, while ν may take the value ν = 0,±1, depending on the geometry of
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the SWNT. The corresponding spectrum, which is given by

εα = b h̄vF
√
k2 + (ν/3R)2 , (1)

is gapped (semiconducting nanotube) and, near k = 0, parabolic-like (similarly to conventional
semiconductors) for ν 6= 0, while for ν = 0 it is gapless (metallic case), with the typical massless
Dirac-cone structure.[11] The SWNT phonon spectrum near the K and K′ points includes[11, 12]
longitudinal and transverse acoustic modes with sound velocities of about 1.9 · 104m/s and
1.5·104m/s respectively, the breathing modes orthogonal to the nanotube surface, with a roughly
q-independent spectrum h̄ωBr ' 0.14 eVÅ/R, and a couple of optical modes whose energies are
about 0.2 eV.

In order to account for energy dissipation and decoherence induced by the nanotube phonon
bath on the otherwise phase-preserving electron dynamics, we have applied to the carbon
nanotube the formalism introduced in [10] via a numerical solution of the Lindblad-based non-
linear density-matrix equation (LBE)
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=
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+
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]
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Here, the first term describes the scattering-free propagation, whereas the second term is a
non-linear scattering superoperator expressed via generalized scattering rates Psα1α2,α′

1α
′
2
, whose

explicit form is microscopically derived from the electron-phonon Hamiltonians, with s labelling
the various phonon modes. The fully quantum-mechanical density-matrix equation (2) enables
us to go beyond the conventional Boltzmann transport equation, which is recovered in the
diagonal limit (ρα1α2 = fα1δα1α2),[13] where the generalized scattering rates reduce to the
semiclassical rates provided by the standard Fermi’s golden rule, P sαα′ = Psαα,α′α′ .

In order to show that carbon nanotubes can be utilised as quantum-mechanical channels
for the non-dispersive transmission of electronic wavepackets, we have performed simulated
experiments where the shape of an initially prepared wave packet is monitored while it evolves
under the effect of the phonon bath. Any initial state can always be written as ρ = ρ◦+δρ, where
ρ◦ is the homogeneous equilibrium state and δρ describes a localised excitation, whose spatial
shape (e.g. Gaussian) can in principle be generated experimentally via a properly tailored optical
excitation. The description of the specific optical generation is beyond the aim of the present
paper. However, the localisation of the initial wave packet is the crucial aspect in our analysis.
A simple choice that captures this essential physical ingredient is an initial state described by
an intra-valley conduction-band density matrix ρα1α2 = δv1,v2δb1,1δb2,1ρk1 k2 , where

ρk1k2 =
√
f◦k1f

◦
k2
e−`|k1−k2| . (3)

Here f◦k is the Fermi-Dirac distribution of the conduction-band states k, and the parameter `
plays the role of a delocalization length. Indeed for ` → ∞ the spatially homogeneous equi-
librium state ρ◦k1k2 = f◦k1δk1k2 is recovered, whereas for finite ` the excitation δρ consists of
interstate phase coherence (intraband polarization) determined by the parameter ` and whose
presence is necessary for producing localized distributions. In particular, in the limit ` → 0
one obtains the maximally localized wavepacket. Moreover, a distinguished feature of the ini-
tial condition in (3) is the absence of nonequilibrium diagonal contributions (ρkk = f◦k ), which
implies that energy dissipation and decoherence will affect the non-diagonal contributions only;
this is the typical situation produced by a weak interband optical excitation.
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Figure 1. Room-temperature scattering-
free evolution in a semiconducting (10,0)
SWNT (ν = 1) (a) and in a metallic (12,0)
(ν = 0) SWNT (b): Charge density of
the maximally-localized (` → 0) electronic
wavepacket in Eq. (3) as a function of
the position along the SWNT axis at three
different times: t = 0 fs (solid), t = 50 fs
(dashed) and t = 100 fs (dashed-dotted).

We start our discussion by analysing the scattering-free propagation of the initial state (3),
i.e. switching off the electron-phonon interaction in Eq. (2). Figure 1 shows the spatial carrier
density n(r‖) at different times for the initial state (3), taken at room temperature and in
the maximally-localized limit (` → 0). The cases of semiconducting and metallic nanotubes
are shown in panels (a) and (b), respectively. For the semiconducting nanotube (ν 6= 0) the
dispersion relation (see Eq. (1)) at small k reduces to the parabolic spectrum of conventional
semiconductor materials and gives rise to the typical classical-like diffusion process, preventing
any information transfer via electronic wavepackets. In contrast, for the case of the metallic
nanotube (ν = 0), characterised by a linear dispersion, the initial charge peak splits into two
identical and shape-preserving components which travel in opposite directions with velocity ±vF
(see Fig 1(b)), i.e., n(r‖, t) = n+(r‖ − vF t) + n−(r‖ + vF t). This non-dispersive propagation is
the interesting starting point of our analysis.

We now focus on the metallic nanotube and switch on the electron-phonon coupling to address
the crucial question of whether and how energy dissipation and decoherence modify such ideal
dispersion-free scenario. To this end, we have performed a set of simulated experiments based
on the LBE (2) including all the above introduced phonons. In order to expand the space scale
with respect to the ideal scenario displayed in Fig. 1(b), here the delocalization length ` in the
initial condition (3) is chosen such to get a FWHM value of the initial peak of 0.4µm.
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Figure 2. Room-temperature evolution
of the electronic wavepacket (3), with `
such to provide an initial FWHM of 0.4 µm,
in a metallic (12,0) SWNT as a function
of the position r‖ along the SWNT axis,
at three different times: t = 0 ps (left
peaks), t = 1 ps (central peaks) and t = 2
ps (right peaks). The solid lines show
the effects of the carrier-phonon coupling,
accounted for by the LBE (2), compared to
the scattering-free (dashed lines) as well as
RTA propagations (dot-dashed lines).
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Figure 2(a) shows the wavepacket propagation in a (12,0) SWNT at room temperature.
The electron-phonon coupling, accounted for by our LBE simulation (solid curve), does not
significantly alter the shape with respect to the ideal scattering-free result (dashed curve), so that
the transmission is essentially dispersionless up to the micrometric scale (the diffusion time would
still increase at lower temperatures, e.g. at 77 K one has a signal attenuation of less than 1% after
1µm). Such a strong suppression of the phonon-induced diffusion predicted by our LBE is mainly
due to the negligible effect produced by forward processes (i.e., those which preserve velocities),
which do not lead to the scattering non-locality and quantum diffusion speed-up phenomena that
occur in semiconducting materials [13]. Remarkably, such uneffectiveness of forward scattering
processes occurs despite their electron-phonon couplings are a priori one order of magnitude
bigger than the backward ones [11] for acoustic as well as breathing phonons (here the optical
modes have a negligible impact due to their high energy[7]). In sharp contrast, the oversimplified
RTA strongly overestimates the phonon-induced dissipation, due to its inability to distinguish
between forward and backward processes, as shown by the dash-dotted line of Fig.2. Notice that,
while semiclassical approaches show a somehow similar forward-scattering suppression, here the
off-diagonal nature of the density matrix makes such phenomena highly nontrivial and strictly
related to the genuine quantum phenomenon of scattering-induced nonlocality.

In conclusion, differently from what happens in semiconducting materials[10], in metallic
SWNTs the impact of the phonon-induced diffusion on the wavepacket propagation is very
limited. The scattering-free propagation is thus not just an ideal scenario, and the initial
wavepacket propagates at the Fermi velocity with an almost unaltered shape, despite dissipation
and decoherence processes are in principle present. Our results indicate that metallic SWNTs
are a promising platform to realise quantum channels for the non-dispersive transmission
of electronic wavepackets. We thus expect these results will pave the way for advanced
optoelectronics with metallic SWNTs.
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