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Abstract. Using a classical gluon cascade, we study the thermalisation of a gluon-plasma in
a homogeneous box by considering the time evolution of the entropy, and in particular how the
thermalisation time depends on the strong coupling as. We then partition the volume into cells
with a linearly increasing temperature gradient in one direction, and homogeneous/isotropic in
the the other two directions. We allow the gluons to stream in one direction in order to study
how they then evolve spatially. We examine cases with and without collisions. We study the
entropy as well as the flow-velocity in the z-direction and find that the system initially has a
flow which dissipates over time as the gluons become distributed homogeneously throughout
the box.

1. Introduction
Normal hadronic matter is composed of quarks in either three-quark or quark-antiquark bound
states which are held together by the strong force. These quarks are said to be confined, as
their strong attraction prevents them from being observed outside of these bound hadron states.
However, under extremely high densities, it is possible for the quarks to become free of this
strong attraction and become de-confined. When this happens the resultant state of matter is
referred to as a Quark-Gluon Plasma (QGP). A QGP is a phase of Quantum Chromodynamics
(QCD) that consists of free quarks and gluons in a state of matter that resembles (but is distinct
from) a gas-like plasma. It is believed that up to a few milliseconds after the Big Bang that the
universe was in a QGP state and thus its study can provide interesting insights into our earliest
universe. In contrast to a gas-like plasma, the QGP behaves like a near-ideal Fermi liquid. The
creation of the QGP is the main subject of the heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC) and at the Large Hadron Collider (LHC) at CERN. To recreate the conditions
of the primordial universe, these powerful accelerators collide head-on heavy ions such as gold
or lead. In these heavy ion collisions, hundreds of protons and neutrons that make up two such
nuclei smash into each other at energies of upwards of a few trillion electronvolts each. This
forms a miniscule fireball in which everything “melts” into a QGP.

The QGP can be described by the Boltzmann equation which gives a microscopic picture
of particle systems. Thus in order to describe the QGP we solve the relatavistic Boltzmann
equation

<§t + gv) f(x,p) = Ca2, (1)

where f(x,p) is the particle density in phase space, and Cag is the collision term. Unfortunately,
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the Boltzmann equation has no analytic solution and must be solved using numerical methods.
One such method is to solve it via Monte Carlo cascade simulations. We implement here such
a simulation of a simplified picture of the QGP, and use it to study the thermalisation of a
gluon only plasma in a volume. We will consider only elastic gg — gg collisions and will treat
the gluons as classical Boltzmann particles. The cascade itself involves two distinct stochastic
processes: to determine whether or not two gluons actually collide and to determine exactly how
they collide.

2. Background

2.1. Scattering in the CoM Frame

It is often easier to work out the specifics of 2 — 2 scattering in the centre of mass (CoM)

frame, which is defined as the frame wherein we have p; + p2 = 0. We use a Lorentz boost to

transform from the Lab frame to the CoM frame, work out the details of the scattering, before

performing the inverse Lorentz boost back to the Lab frame. In the CoM Frame (quantities

in the CoM Frame are primed), our pair of colliding massless gluons will have equal energies
1 = E5 = \/p}-p) and thus equal three-momenta but in opposite directions pj = —p).

Mandelstam s is then

(P{ + P3)?
(Ipi] + IPh))?
= (2|p}|)? = 4E7 = 4B} (2)

»
|

Similarly Mandelstam ¢t is
t = (P[—P3)°=0—(p}—ph)’
= —2p7 + 2pjp} cos ¢’
= —2FEP(1—cos¥) = —g(l — cos @) (3)

Where the zero in the first line comes from conservation of four-momentum and 6 describes
to the scattering angle in the CoM frame. Note from Eq. (3) that since cos@’ € [—1,1], that
t € [-s,0].

The three-momentum transfer is given by q? = (p} — p4)?. Thus we have that ¢t = —q?. The
three-momenta in the CoM frame for a gluon ¢ involved in the scattering is given by the Lorentz
boost [3],

Y
P; = Pi+ —5—(Vcom - Pi)Voor — YVcom Ei (4)
VeoM

where the boost velocity and ~ factor of the CoM are

pP1 + P2
Voo = —————— (6)
° p1] + |p2|
1

= 7
v T2 (7)

Our axes are defined by the units vectors

/

of P;
X = ) (8)

|pj]
V. = N ' Veom — (Veom - X)X]. (9)
72 = ' xy. (10)
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Where N is a normalisation factor. Then the scattered momenta in terms of the scattering
angles in the CoM frame are thus given by [2]
Di.. .y = P (cosO0'X 4 sin ' sin ¢’y + sin 6’ cos ¢'2’) . (11)

The scattering angles are determined via inverse transform sampling before performing the
inverse Lorentz boost to get back to the Lab frame.

2.2. Stochatically determining if the Gluons Scatter
We derive the collision probability directly from the collision term of the Boltzmann equation
(Eq. 1). The particle density in phase space is

AN

TG (12)
(271r)3 T A3p;

f(z,p) =

while (neglecting quantum effects) the collision term Cag is given by [1]

Coy = - Mo 2m)A64 (p, + ply — p1 —
2= 9E, / (27r)32E2u/(2w)32Eg( )32E2f1f2 [ My 12l (2m)70 (P + P2 = 1 = p2)

_ 1 x/ d3p2 1/ d3p'1 d3 fifa % M | (277)45(4)( e ,)(13)
2By~ J (2m)%2Eyv ) (27)PE} (27r)32E’ 172 X (M2 1a p1+p2 — i —ph),

where v is a factor related to double counting and |Mjy_19|? is the leading order pQCD
interaction matrix element squared.

If we assume the two particles occupy a spatial volume A3x and have momenta in the range
(p1,p1 + A%p1) and (p2, p2 + A3ps), then the collision rate per unit phase space for incoming
particles p; and ps with A3p; and A3p, will be given by

A]\fcoll f f / d3p1 d3pl2
b )3A3$A3p1 2E1 (277)32E Y279 | (2n)32E] (21)32E)

= |Myg 1o [2(27)26W (p1 4 p2 — P — ph). (14)

We can re-write Eq. (14) as [1]

WA .'EA3p1 2E1 (27T)32E2

At f1f2 X 28 X 0929. (15)

Then using Eq. (12), we obtain an expression for the absolute collision probability in a unit box
A3z and unit time At,

0 — V022 16
ANIAN, "7 A3y (16)
where v, = ﬁ, and s is the invariant mass of the particle pair.

We will need the scattering cross-section in order to obtain the collision probabilities. For
elastic gluon scattering, the differential cross-section is [1]

Py =

(17)

do99799  9mag (3 tu  su st)
dt  2s? ’

where s, t, and u are the Mandelstam invariants.
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The collision probability requires a cross-section. The cross-section is large when ¢ is small,
corresponding to a small scattering angle which are overwhelmingly probable. The differential
cross-section is then approximated by [1]

do _ 9mas

s 18
dt 12 (18)
To avoid infrared divergence, a Debye mass term is included to account for screening.
d Ima?
SO (19)

Integrating this over all ¢ (i.e. from —s to 0) then gives a regularised finite total cross-section

S

o(s) = 9mal—; (20)

m%(s+m%)

3. Simulation

With the background set out in the previous section, we are now equipped to simulate a gluon-
plasma in a volume. Two separate configurations were examined. The first focuses on gluons
colliding within a homogeneous box where the equilibrium temperature, number of gluons,
strong coupling constant as well as the actual time period for which the gluon-plasma evolves
are all variable parameters. Figure 1 shows an example of studying the thermalisation of the
homogeneous box via the time evolution of its entropy. Through algebraic manipulation, we are
able to fix the equilibrium temperature of the system through our choice of initial parameters.
The system was simulated for a variety of initial phase space distributions including a delta
function. After a characteristic time, called the thermalisation time, the system was observed to
reach a state of dynamical equilibrium. We extracted the thermalisation time by modelling the
difference of the entropy at each time step from its analytical equilibrium value as an exponential
decay.

In the second configuration we partition the volume into cells and allow the gluons to stream
in one direction. We consider two cases: one in which the gluons free-stream and the other
where they are allowed to collide but only with other gluons in their cell. Figures 2 and 3 shows
example plots of the flow-velocity in the z-direction (extracted using the energy-momentum
tensor) as a function of time for free-streaming and including collisions respectively.

4. Conclusion

We found that the homogenous box system thermalises faster with increasing equilibrium
temperature and particle number. We were then able to simulate the system for a variety
of values for o and thus study how the thermalisation time is proportional to the variation of
the QCD coupling constant. The thermalisation time was qualitatively shown to be inversely
proportional to ag.

We then added a spatial aspect to the model by dividing the volume into cells and allowing
the gluons to stream in one direction. We examined a case where the gluons did not collide
amongst themselves (free-streaming) and a case where they did. We implemented a linearly
increasing temperature gradient for the cells and sampled the momenta of the gluons from a
Boltzmann distribution. The entropy for both cases was seen to increase, with the free-streaming
case gaining entropy from mixing, while the case which included collisions gained entropy from
both mixing and thermalisation. We also studied how the gluons spatially distribute themselves
throughout the volume. In both cases the gluon-plasma eventually reached a point where the
gluons were distributed homogeneously throughout the volume. Though in the latter case, the
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Figure 1: Time evolution of the entropy (initial phase space distribution is a delta function) for a plasma
of 128 gluons with Teq = 300 MeV, o, = 0.4 ,and dp = 0.2. The solid line plotted alongside is the analytic
value for the entropy at equilibrium.
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Figure 2: z-direction flow-velocity (free-streaming) Figure 3: z-direction flow-velocity (collisions incl.)

end situation was noted to be a dynamic equilibrium which constantly fluctuated about its
equilibrium values. We also derived from the energy-momentum tensor, the flow-velocity in the
z-direction. We found that in both cases, the system initially had a flow-velocity in the negative
z-direction which, after a characteristic time, reversed direction but also decreased in magnitude.
This behaviour repeated until the flow-velocity went to zero (apart from fluctuations).
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