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Abstract. We give general expressions for the light reflection and transmission coefficients
for one-dimensional (1D) photonic quasicrystals in the framework of the so-called two-wave
approximation. A special attention is paid to quasicrystals composed of dielectric layers, where
the reflection and transmission coefficients as a function of the length of the structure take a
simple form. The expression for the diffraction vectors of a 1D quasicrystal with an arbitrary
number of different constituent segments is discussed as well.

Introduction
Quasicrystals (QCs) belong to a wide class of aperiodic systems possessing long-range order
and allowing coherent Bragg diffraction of electron or electromagnetic waves [1,2]. In the case of
light waves such structures are called resonant or active photonic quasicrystals if the constituting
materials produce dipole-like excitations; such systems are, for instance, multiple-quantum-well
structures (MQWs). The theory of the propagation of electromagnetic waves in MQWs in the
framework of the two-wave approximation was developed in work [3] and then generalized on the
case of dielectric contrast [4]. It should be noted that in distinction from 1D periodic systems
for which one can obtain analytically exact solutions, for 1D non-periodic systems it generally
appears to be impossible and one has to resort to some approximations, in particular to that
stated here.

In this work we theoretically study the propagation of electromagnetic waves in 1D quasi-
periodic media and deterministic aperiodic structures (DAS) [3,4], in particular, in quasicrystals.
Firstly, we deduce a general expression for diffraction vectors of an arbitrary 1D quasicrystal.
Secondly, we consider the two-wave approximation in a general form to calculate the light
reflection and transmission coefficients for a one-dimensional DAS with non-zero value of
the structure factor. Thirdly, we present the expressions for the reflection and transmission
coefficients in the case of an all-dielectric photonic quasicrystal; the expression for the Fourier
components εG of the dielectric function of a DAS expressed by the structure factor is also given.
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1. The structure factor and diffraction vectors of 1D quasicrystals
We use the standard definition of the structure factor [2,3]:

f(q) = lim
N→∞

1

N

N∑
m=1

e2iqzm =
∑
G

fGδ2q,G . (1)

Here q is the light wave vector, the coordinates zm give the positions of the scattering elements,
which in our case are interfaces between the dielectric layers, and symbol δ2q,G is the Kronecker
symbol for arbitrary, not necessarily integer-valued quantities 2q and G. It is assumed that the
structure factor of the semi-infinite system can be different from 0, i.e. fG ̸= 0 for any G. The
vectors G are diffraction vectors of a quasicrystal (or any other DAS), which can be found from
a given sequence zm determined by DAS under consideration. For example, for 1D quasicrystals
constructed from two segments (A and B) the vectors G and the corresponding structure factors
fG are given by two integer indices, h and h′, i.e. G = G(h, h′). The analogous definition of the
structure factor (equation (1)) is applied to a sublattice. It is worth mentioning that vectors G
of the sublattices of a quasicrystal are equal, i.e. Ga(h, h

′) = Gb(h, h
′) = G(h, h′). A calculation

of the structure factor fG of a quasicrystal is a separate problem and is made in [2,5].
Let us consider a one-dimensional disordered quasicrystal, with the interfaces between the

segments placed along z-axis in points z′m = zm+δzm, where δzm are independent and randomly

distributed variables so that δzm = 0, δz2m = σ2. The structure factor averaged over the disorder
realization has a form

f(q) =
∑

h,h′,h′′...

δ2q,G(h,h′,h′′...)fhh′h′′... exp(−(qσ)2/2) .

The long-range correlations in the positions of the layers are still present in such a structure,
and consequently the Bragg diffraction is determined by the same diffraction vectors as in the
non-disordered quasicrystalline lattice. Evidently, the theory presented in the work is suitable
for such correlated disordered structures as well.

We shall give a simple but not rigorous derivation of the expression for the diffraction vectors
of an unlimited 1D quasicrystal composed of n types of different segments (i.e. of various
constituting layers). Let us denote by ai the length of i-type segment and by Ni the number of
such segments in the structure. Thus, the full length of the quasicrystal is L =

∑n
i=1Niai. Using

a more general definition of the structure factor fN (q) = N−1 ∑N
j=1 e

iqxj , where N =
∑n
i=1Ni

is the full number of segments of the quasicrystal, and by dividing the whole quasicrystal into
self-similar parts, in the limit N → ∞ one can obtain that GL = 2πm, m ∈ Z. Then, by taking
into account the linear independence of the solutions, one can present m =

∑n
i=1Mihi, where

hj ∈ Z are integers determining the diffraction vectors G ≡ G(h1, h2, h3, ...) and Mi are also
integers, but not arbitrary. From the equality G

∑n
i=1Niai = 2π

∑n
i=1Mihi and independence

of the sought solution for G on values Ni (Ni → ∞), one can get Mi = Ni (i = 1, 2, ...n). Using
the notion of the average period of a quasicrystal, which is d̄ = L/N (when L → ∞, N → ∞),
and changing indices so that h = h1, h

′ = h2 − h1, h
′′ = h2 − h1 and so on, we eventually come

to the following expression for the diffraction vectors

G(h, h′, h′′, h′′′...) =
2π

d̄

(
h+

h′

t1
+
h′′

t2
+
h′′′

t3
+ ...

)
,

where the numbers h, h′, h′′, h′′′, ... ∈ Z, and values of tk are defined by the relations tk =
1+limNi→∞

∑i=n
i=1,i̸=kNi/Nk. In particular, the diffraction vectors of a two-segment quasicrystal

are defined by expression G(h, h′) = (2π/d̄)(h + h′/t) [2], where t = 1 + limN→∞N1/N2.
The simplest and well-known example is the so-called Fibonacci quasicrystal, which can be
constructed by the help of the substitution rule A→ B, B → AB, thus, starting with a sequence
ABAABABA.... For this quasicrystal the value of t is the golden ratio, i.e. t = (

√
5 + 1)/2.
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2. Pseudo-band gaps in aperiodic systems
We consider a propagation (along z-axis) of electromagnetic waves in a 1D structure for
which the modulation function F (z), describing variation of the medium parameters (e.g.
the dielectric permittivity) along z-direction, can be decomposed into the Fourier series
F (ω, z) =

∑
G FGe

iGz. Besides periodic structures, which obviously satisfy this property, there
are a number of deterministic aperiodic structures generating coherent Bragg diffraction, in
particular, quasicrystals and incommensurate modulated crystals [1]. The frequency functions
FG depend on the system under consideration and require a separate calculation. As long as
the function F (z) is almost-periodic [6] (or periodic when considering a periodic structure) the
electromagnetic field EK(z) with the wave vector K can be sought as a linear superposition∑
GEK−Ge

i(K−G)z, and the wave equation is written as

−d2EK(z)/dz2 = F (ω, z)EK(z) (2)

Hereafter we consider the situations where in RHS of equation (2) only the components with
vectors G = 0 and ±G (where G ≡ |G|) are kept and one can take into account only two wave
vectors, K and K−G, at the condition |K−G/2| ≪ G/2. The last is valid if |FG| ≪ |F0|, which
allows neglecting the rest of diffraction vectors G. Thus, EK(z) ≈ EKe

iKz + EK−Ge
i(K−G)z,

where the wave vector magnitude K can be presented as K = G/2 ± Q. Substituting the last
expression for EK(z) in equation (2) and neglecting the other components except EK and EK−G

we obtain that EK−G = EK(K
2 − F0)/FG and Q =

√
(G/2)2 + F0 ±

√
G2F0 + FGF−G, where

the positive sign must be ignored since Q≪ G/2 and the real part of F0 is positive, consequently

Q =

√
(G/2)2 + F0 −

√
G2F0 + FGF−G . (3)

By neglecting the absorption in the system one can get F0 = F ∗
0 and FG = F ∗

−G, and if the
radicand (under the big root sign) is negative we find ourselves in the region of a pseudo-band
gap. The latter strongly resembles the typical band gaps in periodic structures: a high reflectivity
in the pseudo-band gap region is due to the constructive interference of the light waves competing
with the effect of nonperiodicity of the structure. The edges of the pseudo-band gap satisfy the
condition Q = 0 and can easily be found from equation (3): (G/2)2 − F0 ± |FG| = 0. Similar
to 1D quasi-periodic media, two-dimensional quasicrystals made from materials with a small
dielectric contrast can also demonstrate wide pseudo-band gaps [7]; however, in this case the
derivation of the explicit analytical expressions is complicated.

The above two-wave approximation can be justified by the help of the perturbation theory
which allows one to evaluate the convergence of an infinite sum over all diffraction vectors
except G and to determine pseudo-band gap edges placed around a Bragg frequency. Primarily,
this approach was applied to the so-called 1D resonant photonic crystals for which the Bragg
frequency coincides with the resonant one [3].

In the simplest cases, the Bragg condition for a DAS is defined in such a way that it would lead
to the only pseudo-band gap in the energy spectrum or to two pseudo-band gaps of almost the
same width. The first case is realized in 1D photonic quasicrystals with non-frequency-dependent
dielectric constants of the constituent materials. Since while decreasing the dielectric contrast
the value FG converts to 0 (see section 3), the polariton wave vector becomes Q = |G/2−

√
F0|

and at a frequency ω̄ the Bragg conditionG/2 =
√
F0(ω̄) is fulfilled. The second case corresponds

to a situation where the segments of a photonic quasicrystal are characterized by some frequency
function symmetric about a special frequency, e.g., the exciton resonance frequency for MQWs
[3]. One can show that for MQWs the calculation of the corresponding Fourier-components
leads to the following expressions:

F0 =

(
ω

c

)2

ε̄− 2ir

1 + r

ω
√
εa

c d̄
, FG =

[(
ω

c

)2

(εa − εb)−
2ir

1 + r

ω
√
εa

c a

]
f−G
πG

sin
Ga

2
. (4)
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Here we have used the following notations: εa and εb are the background dielectric constants of
the quantum well and the barrier, respectively, a is the well width, d̄ is the mean period defined
as the average distance between quantum wells, and r is the amplitude reflection coefficient of
light for a single quantum well (reduced to the plane in the centre of the well), calculated for
the case εa = εb. In addition, equation (4) contains the structure factor fG which for quasi-
crystalline sequences is equal to 2πfhh′/d̄, and f−G = f∗G. The optical spectra and pseudo-band
gaps for light propagation in MQWs were studied in [3,4,5]. In this case the resonant Bragg
condition is ω0n/c = G/2 (where n ≈ √

εb) and in the energy spectrum there are two pseudo-
band gaps which in the reflection spectra manifest themselves as two “shelves” of almost the
same width being located at about equal distances from the frequency ω0.

Now we will find the general expressions for the amplitude reflection and transmission
coefficients (at normal light incidence) for a structure of the length L with an arbitrary quasi-
crystalline sequence of the constituent layers of different types. For this purpose we define the
field E(z) as

E0e
iqz + Ere

−iqz (z < 0) ; Ete
iq(z−L) (z > L)

EK1e
iK1z + EK1−Ge

i(K1−G)z +EK2e
iK2z + EK2−Ge

i(K2−G)z (0 < z < L)

where K1 = G/2−Q, K2 = G/2 +Q, and q = (ω/c)
√
εout is the wave vector magnitude of the

plane light wave incident from a uniform medium surrounding the quasicrystal. By using the
boundary conditions for the field E(z) and its derivative dE(z)/dz at the interfaces z = 0 and
z = L and introducing the notations ξ1,2 = (K2

1,2 − F0)/FG,

A(K1,2) = q −K1,2 + (q +K2,1)ξ1,2

B(K1,2) = q +K1,2 + (q −K2,1)ξ1,2

C(K1,2) = K1,2 − q − (q +K2,1)ξ1,2e
−iGL

the reflection coefficient rL = Er/E0 can be reduced to the form

rL =
A(K2)C(K1)−A(K1)C(K2)e

2iQL

B(K2)C(K1)−B(K1)C(K2)e2iQL
(5)

and the transmission coefficient tL = Et/E0 to

tL = 2qeiK2L
C(K1)(1 + ξ2e

−iGL)− C(K2)(1 + ξ1e
−iGL)

B(K2)C(K1)−B(K1)C(K2)e2iQL
. (6)

The analysis of expressions (5) and (6) under condition |FG| → 0 shows that if q2 = F0,
then rL = 0 and tL = eiqL, therefore the dielectric constant of the surrounding medium must be
equal to εout = F0(c/ω)

2. This equality can be strictly satisfied for any frequency only for purely
dielectric photonic quasicrystals because in this case F0 = (ω/c)2ε̄ (see section 3), nevertheless
it can be approximately used in other cases also. In fact, the dielectric constant εout of the
surrounding medium should be set to ε̄ = L− ∫ L

0 ε(ω̃, z)dz, where ω̃ must satisfy the condition
|FG(ω̃)| ≪ 1. We pay attention that the above expressions for rL and tL can be exploited only
in the frequency ranges for which the criterion for the validity of the two-wave approximation
is satisfied, and for each individual system these expressions should be checked numerically. In
the case where the value of the dielectric constant of the medium surrounding a quasicrystal is
arbitrary the reflection and transmission coefficients, instead of expressions (5) and (6), can be
found by using the transfer-matrix technique, see [4].

In the pseudo-band gap region, in the limit as L → ∞, |r∞| = 1 and from equation (5)
one can obtain the dispersion relation between the frequency ω and imaginary part Q′′ of the
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polariton wave vector Q, which is just equation (3). Let us introduce the following notations:
η =

√
G2F0 + |FG|2,X = 2GQ′′F ′′

G+2|FG|2+G2F ′
G−2ηF ′

G, where F
′
G and F ′′

G denote the real and
imaginary parts of FG, respectively, and Q

′′ =
√
η − (G/2)2 − F0. Then the reflection coefficient

of light from a semi-infinite structure can be written as r∞ = eiϕ = Re(r∞)+ iIm(r∞) (where ϕ
is the reflection coefficient phase), and its real and imaginary parts after some transformations
may be reduced to the following forms:

Re(r∞) =
(q2 + F0)X + 2|FG|2(F ′

G − η)

(q2 − F0)X + 2|FG|2(η − F ′
G)

, Im(r∞) =
2q[2Q′′(F ′

Gη − |FG|2) +GF ′′
G(2F0 − η)]

(q2 − F0)X + 2|FG|2(η − F ′
G)

(7)
These expressions can be used to calculate the phase change ϕ on reflection from the interface
between the structure and the surrounding medium and also to state the conditions under
which the phase of the light wave changes by a given value ϕ. The latter has a direct relation
to different types of 1D topological insulators, e.g., 1D dielectric topological insulator [8].
Since for such systems F0 = q2, the frequency ω at which ϕ = π, as is seen from the first
equation (7), can be found from the condition X = 0, which can be simplified to the form
2GQ′′ sinψ + 2|εG|(ω/c)2 + (G2 − 2η) cosψ = 0, where ψ is the phase of εG = |εG|eiψ.

3. The dielectric photonic quasicrystals
If a 1D photonic quasicrystal consists of layers characterized with non-frequency dependent
dielectric susceptibilities (and magnetic permeability µ = 1), one can find the Fourier-
components F0 = (ω/c)2ε0 and FG = (ω/c)2εG, where ε0 and εG are Fourier-components of
the dielectric profile function ε(z) =

∑
G εGe

iGz. The function ε(z) can be represented in terms
of the unit step functions, from where one can obtain the expression for εG which for a two-
segment quasicrystal is

εG = εaf
(a)
−h,−h′

(1− e−iGa)

iGd̄a
+ εbf

(b)
−h,−h′

(1− e−iGb)

iGd̄b
, (8)

where d̄a = limN→∞(Naa+Nbb)/Na and d̄b = limN→∞(Naa+Nbb)/Nb are the mean periods

of sublattices of the initial quasi-crystalline lattice, and f
(a)
hh′ and f

(b)
hh′ are the structure factors

related to the corresponding sublattices. The generalization of equation (8) on an arbitrary
number of segments is trivial.

It is useful to mention the second simplest case of a dielectric photonic QC, when a
deterministic aperiodic structure consists of dielectric layers A with the width a incorporated
into a dielectric medium with the dielectric constant εb in such a way that their centres, lying
along z-axis, form a sequence given by the expression zm = z0 +md̄+∆{m/t+ φ}. Here z0 is
an arbitrary constant, ∆, t, φ are the parameters of the structure, d̄ its average period, and {x}
denotes the fractional part of a number. In this case the Fourier components F0 and FG can be
found from equation (4) by setting r → 0.

The edges of a pseudo-band gap calculated on the basis of the two-wave approximation are
found from equation (3) under condition Q = 0: ω± = (Gc/2)/

√
ε0 ± |εG| . The value of the

wave vector of the light propagating in the surrounding medium, q, must be chosen equal to
ω
√
ε̄/c because it leads to zero reflection coefficient when FG → 0; ε0 = ε̄ is the average dielectric

constant and L is the length of a quasicrystal. After some transformations and by dividing the
numerators and denominators of the expressions for rL (equation (5)) and tL (equation (6)) by
Z(ω) = FGe

iGL/2 + (Q2 − (q+G/2)2)e−iGL/2 the amplitude reflection coefficient of light can be
reduced to the following form

rL =
(FG +Q2 − (q +G/2)2)(Q2 − (q −G/2)2)

(FG +Q2 − (q −G/2)2)((G/2)2 − q2 −Q2 − 2iqQ cotQL)
(9)
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and the amplitude transmission coefficient to

tL =
−2iqQ[FGe

iGL/2 + (Q2 − (q −G/2)2)e−iGL/2]

(FG +Q2 − (q −G/2)2)((G/2)2 − q2 −Q2 − 2iqQ cotQL) sinQL
. (10)

A further simplification of the above expressions for rL and tL leads to the following answers:

rL =
FG(qG−

√
q2G2 + |FG|2) + |FG|2

(FG + qG−
√
q2G2 + |FG|2)(

√
q2G2 + |FG|2 − 2q2 − 2iqQ cotQL)

, (11)

tL =
−2iqQ[FGe

iGL/2 + (qG−
√
q2G2 + |FG|2)e−iGL/2]

(FG + qG−
√
q2G2 + |FG|2)(

√
q2G2 + |FG|2 − 2q2 − 2iqQ cotQL) sinQL

. (12)

The equations (11) and (12) can be used when |εG| ≪ ε̄, in particular, for low-contrast photonic
quasicrystals. Since these expressions contain explicitly the length L of a structure, it allows
one to determine the length at which the formation of pseudo-band gaps occurs in different 1D
deterministic aperiodic structures.

A typical reflection spectrum |rL(ω)|2 for a quasicrystal calculated by equation (11) in the
vicinity of frequency ω̄ = Gc/2

√
ε̄ is almost symmetrical about ω̄ and resembles in much the

reflection spectrum for an analogous periodic structure. Since the equation Z(ω) = 0 determines
some of the eigenfrequencies of the system and the function Z(ω) is reduced in expressions for rL
and tL (equation (5) and (6)), one can conclude that the set of eigenfrequencies and the reflection
and transmission spectra for 1D purely dielectric photonic quasicrystals are much poorer than
those for photonic quasicrystals composed of constituent layers with a frequency-dependent
dielectric function.

We note that in the pseudo-band gap region in the limit as L → +∞ the product Q cotQL
gives Q′′, where Q′′ =

√
η − (G/2)2 − q2, and | sinQL| → +∞ leading to zero transmission

coefficient (t∞ = 0). Another possible approximation is qG −
√
q2G2 + |FG|2 ≈ −|FG|2/(2qG),

which is valid for very low-contrast structures. With these simplifications, equations (11) and
(12) for the optical coefficients rL and tL can be considerably simplified, especially in the cases
of the pseudo-band gap edges (at frequencies ω±) and the gap “centre” (at frequency ω̄).

In conclusion, we have given the general expression for the diffraction vectors of 1D
quasicrystals and generalized the theory of light propagation in quasicrystals (and in other
deterministic aperiodic structures) developed in works [3,4]. An analysis of the obtained
expressions allows one to optimize the parameters of different 1D photonic quasicrystals to
get pseudo-band gaps in the frequency range of interest. Also the developed theory can be
generalized to the case of inclined light incidence or the propagation of acoustic waves in phononic
quasicrystals, and as a particular case it can give answers for the corresponding periodic systems.
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