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Abstract. The objective of this work is to analyze orbital maneuvers of a spacecraft orbiting 

Mars, considering disturbance effects due to the gravitational attraction of the Sun, Phobos and 

Deimos, beyond the disturbances due to the gravitational potential of Mars. To simulate the 

trajectory, constructive aspects of the propulsion system were considered. Initially ideal 

thrusters, capable of applying infinite magnitude of the thrust, were used. Thus, impulsive 

optimal maneuvers were obtained by scanning the solutions of the Lambert’s problem in order 

to select the maneuver of minimum fuel consumption. Due to the impossibility of applying an 

impulse, the orbital maneuver must be distributed in a propulsive arc around the position of the 

impulse given by the solution of the Lambert’s problem. However the effect of the propulsive 

arc is not exactly equivalent to the application of an impulse due to the errors in magnitude and 

direction of applied thrust. Therefore, the influence of the thrusters’ capacity in the trajectory 

was evaluated for a more realistic model instead of the ideal case represented by the impulsive 

approach. Beyond the evaluation of the deviation in the orbital path, was considered an 

automatic correction of the semi-major axis using continuous low thrust controlled in closed 

loop to minimize the error in the trajectory after the application of the main thrust. 

1. Introduction 

This study aims to evaluate the influence of the gravitational attraction of the Sun, Phobos and 

Deimos, beyond the disturbances due to the gravitational potential of Mars, during orbital maneuvers 

of a spacecraft orbiting Mars. Some constructive aspects of the propulsion system were considered. 

Initially ideal thrusters, capable of applying infinite magnitude of the thrust, were used. Thus, 

impulsive optimal maneuvers were obtained by scanning the solutions of the Lambert’s problem (Two 

Point Boundary Value Problem) for various values of transfer time in order to select the maneuver of 

minimum fuel consumption [1]. Then, the selected maneuver was simulated considering a more 

realistic model of the propulsion system. In fact is not possible to accomplish an impulsive maneuver 

because to perform this kind of maneuver it would be necessary an infinite capacity for the thrusters, 

because the entire velocity change of the spacecraft should occur instantly. Thus, the orbital maneuver 

must be distributed in a propulsive arc around the position of the impulse given by the solution of the 

Lambert’s problem. In this arc was used a continuous thrust, limited to the capacity of the thrusters. 

However the effect of the propulsive arc is not exactly equivalent to the application of an impulse due 

to the errors in magnitude and direction of applied thrust. The difference between these approaches 

produces a deviation in the trajectory. The evaluation of deviation is extremely relevant in the mission 
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analysis and spacecraft design of the trajectory control system. Therefore, the influence of the capacity 

of thrusters in the trajectory was evaluated for a more realistic model instead of the ideal case 

represented by the impulsive approach. So initially the bi-impulsive maneuver, which consists of 

finding the transfer orbit that connects a point on the initial orbit to another point in the final orbit 

spending a certain amount of time, is accomplished. An algorithm for solving this problem by 

universal variables was used [1] [2]. Then, the optimum maneuver is selected and simulated using the 

Spacecraft Trajectory Simulator (STRS) [3] [4] [5]. In the STRS simulation environment, the orbital 

movement is obtained by the solution of Kepler's equation for each simulation step. Thus, given an 

initial state, the Keplerian elements are obtained and propagated to the next step, to be converted into 

the new state. In the STRS simulator, the reference state is defined by guidance subsystem providing 

the ideal trajectory to be followed, according to the solution of the Lambert’s problem. This reference 

is continuously compared with the current position of the vehicle generating an error signal, which is 

inserted into porporcional-integral-derivative controller, generating a signal capable of reducing errors 

in transition and stationary regimes. This signal is sent to the actuators to generate a signal to be 

applied in the dynamics model of the movement, added to the disturbing signal due to the gravitational 

forces of the Sun, Phobos and Deimos. Therefore, the evolution of the vehicle can be analyzed. 

2. Orbital perturbation 

The evaluation of the errors in the trajectory becomes even more relevant if the effects of orbital 

perturbations acting on the vehicle were considered. Thus, deviations in the trajectory due to 

disturbances caused by the Mars gravitational potential and the gravitational attractions of the Sun, 

Phobos and Deimos were included in the simulations, since all these perturbations models are 

available in the orbital simulator STRS. The mathematical models of these perturbations in the motion 

of a spacecraft can be found in [6] and [7]. A short discussion of the environmental perturbations 

considered in this work is presented below. 

2.1. Mars gravitational potential 

Considering two particles of mass m  and M  ( mM  ) separated by a distance r , the acceleration 

ma


of the mass m  in relation to the center of mass of the particles, is given by: 

 r
r
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
3
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where G  is the universal gravitational constant ( G  = 6,6726 0,000510
-11

 m
3
/kg s

2
), r


 is the 

vector connecting the two particles, ma


 is the acceleration vector in the direction of r


. The vector ma


 

can be obtained by the gradient of the gravitational potential U . 
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From the second derivative of U  with respect to the coordinates x , y  and z  the Laplace equation 

can be obtained. 
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Using spherical coordinates, the solution of the Laplace’s equation is given by Eq. (4): 
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where nmC , nmS  are constant coefficients that represent the spherical harmonics;   is the Mars-

centric latitude;   is the Mars-centric longitude;  sPnm  are the Legendre associated functions for 

degree n  and order m ;  sPn  are the Legendre polynomials and sens . In this work was used the 

Goddard Mars model 2B. This gravitational model has been developed from data of NASA’s missions 

[8] [9]. The maximum degree and order capable to be considered by this model is 80. 

2.2. Gravitational attractions of the Sun, Phobos and Deimos 

The gravitational potential due to the presence of a third celestial body is given by Eq. (6) [6]: 
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where:   is obtained by the product of the gravitational constant and the mass m  of the third body; 

r  is the absolute position vector of the third body related to the center of Mars;   is the angle 

between the position vector of the satellite related to the Mars r


and the position vector of the satellite 

related to the third body; r  is the absolute position vector of the satellite related to the Mars. Basically 

the gravitational perturbations produce variations in the right ascension of the ascending node and 

variations in the argument of perigee. According to [10] the general problem of three bodies provides 

a simple way to calculate the disturbing accelerations due to the gravitational attraction of the bodies, 

obtained from the Newton’s law of gravitation: 
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where 1r


, 2r


 and 3r


 are the positions of the bodies, 1m , and 3m  the masses of the bodies. 

3. Results 

Due to the impossibility of application of an infinite thrust the maneuver must be distributed in a 

propulsive arc around the position of the impulse. In this propulsive arc continuous thrust is applied, 

limited to the capacity of the thrusters. However, the effect is not equivalent to the application of an 

impulse. According to [6] the velocity increment applied to the spacecraft is given by Eq. (8): 

 
2

1

dsinln0

t

tf

i
sp tg

m

m
IgV   (8) 

where 0g  is the gravitational constant at planet’s surface and g  at the spacecraft altitude, spI  is the 

specific impulse,   is the flight angle formed between the direction of the velocity and the thruster 

pointing direction, im  is the mass of the vehicle and fm  the final mass. From Eq. (8) it is verified that 

the distribution of the maneuver in an arc produces a reduction in the applied velocity increment if the 

direction of application of the thrust remain constant, since in this case the angle   is different than 

zero. To minimize this effect the flight angle could be maintained near to zero by controlling the 

pointing direction of the thruster, ensuring that the thrust is always applied in the direction tangential 

to the path. However, this solution is more complex because it requires the use of the attitude control 

system, and in fact, this approach is not capable to reduce the error in the final orbit reached by the 

vehicle. To optimize the propulsive maneuvers distributed in arcs, it must be considered the 

optimization procedure for orbital maneuvers with continuous thrust: [11]. However the optimization 

of maneuvers with continuous thrust is a difficult task, since in most of the cases it requires numerical 

methods and the definition of initial values for obtaining the solution. Thus, a simple possibility to 

minimize the effect caused by the error in the thrust direction would be executing the maneuver in 

several stages, each one applying just a fraction of the total velocity increment, to reduce each 
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propulsive arc and thereby reduce the angle  . In this case the error in the trajectory is minimized but 

the total time spent to reach the final orbit is maximized, characterizing a problem of multi-objective 

optimization with conflicting objectives. Some studies of multi-objective problems applied to orbital 

trajectories can be found in [12]. Another possibility to minimize the error in the trajectory after the 

application of the main thrust could be the use of an automatic correction of the orbital elements using 

continuous low thrust controlled in closed loop, as presented by [7]. In this approach, the final orbital 

elements are defined, then control loops for each of these elements determine, at each step of the 

simulation, the magnitudes and directions of application of thrust necessary to reach the desired orbital 

elements. The variations of elements occur gradually until the difference between the current and 

reference signals do not generate errors. Then, the propulsion system is turned off automatically. To 

illustrate the necessity of split the maneuver in several propulsive arcs, or use the automatic correction 

approach, six cases are presented: case 1 for impulsive approach, with the thrust applied during 1s; 

cases 2 to 6 for maneuvers using thruster with capacity of 150 N to 350 N, with and without the 

automatic correction. The initial orbit is defined by the following keplerian elements: a = 4000 km,     

e = 0.001; i = 10º;  = 55º;  = 25°. The final orbit is defined by: a = 5000 km, e = 0.001; i = 10º;     

 = 55º;  = 25º. The time interval necessary to perform the transfer maneuver and the necessary 

velocity increment, were determined by the Lambert’s problem (case 1): t = 4583 s; 1v = 176.988 m/s 

( kjiv ˆ 279.25ˆ226.0ˆ 174.1751 


);   2v  = 167.368 m/s ( kjiv ˆ 874.23ˆ525.0ˆ 656.1652 


). 
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Figure 1. Mars gravitational potential disturbing 

applied during the maneuver 
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Figure 2. Sun gravitational disturbing applied 

during the maneuver 
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Figure 3. Phobos gravitational disturbing applied 

during the maneuver 
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Figure 4. Deimos gravitational disturbing applied 

during the maneuver 

The gravitational disturbing forces acting on the spacecraft during the maneuver are shown in Figs. 

1 to 4. It can be verified that the major gravitational disturbing force is produced by the Mars 

gravitational potential. The influence of the Phobos and Deimos is not so relevant due to the small 

mass of the Mars’s satellites. Although the influence of Phobos could be relevant if the spacecraft 

trajectory become too close of Phobos, since the orbit of Phobos is not too high. 
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Figure 5. Case 2 (150N): applied thrust with 

automatic correction 
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Figure 6. Case 2 (150N): semi-major axis error 

with automatic correction 
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Figure 7. Case 6 (350N): applied thrust with 

automatic correction 
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Figure 8. Case 6 (350N): semi-major axis error 

with automatic correction 

The cases 1 to 6, taken into account several thrust capacities, some of them were shown in the 

previous figures. The error and the velocity increment for all cases are summarized in Table 1. 

Table 1. Semi-major axis error and total applied velocity increment 

 

 

Thrust Capacity 

Semi-Major Axis Error  (km) Total Velocity Increment (m/s) 

without automatic 

correction 

with automatic 

correction 
without automatic 

correction 
with automatic 

correction 

Case 1: Impulsive 0.00597855 0.00368516 353.516082 353.294809 

Case 2:   150 N 526.228288 389.124696 359.442515 395.694899 

Case 3:   200 N 316.722898 165.359838 359.130541 398.331927 

Case 4:   250 N 207.462009 47.949564 361.249271 400.715093 

Case 5:   300 N 145.138706 0.0001561 361.021206 397.495559 

Case 6:   350 N 106.691771 0.0024326 363.167535 388.512041 

When considered the application of the impulses, in case 1, all the velocity increment and all 

change in the semi-major axis are performed instantly. Therefore the applied thrust is in fact a pulse, 

however the continuous thrust was applied to counteract the disturbances. This continuous thrust was 

applied because the STRS was adjusted to control the trajectory, reducing the effect produced by the 

disturbances, but the main orbital maneuver in case 1 was performed in an impulsive way. From Table 

1 can be verified that this case produces a small error in the final semi-major axis of the orbit. Both 

results, considering automatic correction and without automatic correction, presented very small 

errors, around 5 meters. Cases 2 to 4 in general presented results with bigger error. In these cases the 

change in the semi-major axis occurs gradually. When using the automatic correction the error was 

continually reduced after the application of the main thrust, nevertheless the amount of time available 

to correct the trajectory was not enough, since the thrust capacity adjusted for the automatic correction 
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was 5N. With more time or with higher thrust capacity the results obtained for cases 2 to 4 could be 

improved. Thus, in a mission analysis and in the dimensioning of a spacecraft should be considered all 

possible combinations of the main thrust and the thrust capacity used in the automatic correction, to 

choose the best solution for the mission. In this study the best result was obtained in case 5 

considering the main capacity of 300N. Without the automatic correction, the semi-major axis error 

was 145.13 km. However with the automatic correction the error was reduced to 15.61 cm. This result 

is much better than the results obtained in the other cases, even considering the impulsive approach. 

The performance of the automatic correction was able to correct the errors generated by the fact that 

the main thrust was distributed in a propulsive arc instead of an impulse applied instantly. With this 

new procedure was possible to eliminate almost all deviations related to the reference trajectory, 

reducing the errors to the same scale of the errors generated by the impulsive approach. 

4. Conclusion 
This work represents an effort in the design of the propulsion system of space vehicles. It was 

confirmed that the effect of a propulsive arc is not exactly equivalent to the application of an impulse. 

The difference produces a deviation of the final orbit relative to the reference orbit. This deviation 

depends on the magnitude of the impulse required for the maneuver, the maximum capacity of the 

propulsion system and the characteristics of the trajectory control system. Thus, the evaluation of the 

trajectory deviations is relevant to the analysis of a space mission and in the design of the trajectory 

control system if a more realistic model is considered instead of the ideal case represented by the 

impulsive approach. Beyond this, the STRS with the automatic correction of the orbital elements, 

which utilizes an innovative technology to reduce the errors in the spacecraft path, controlling the 

continuous thrust in closed loop, was tested with success in the presence of some perturbation forces. 
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