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Abstract. A set of non-linear algebraic equations, which must to be solved using a numerical 
procedure, for ball’s motion, sliding friction and internal loading distribution computation in a 
high-speed, single-row, angular-contact ball bearing, subjected to a known combined radial, 
thrust and moment load, which must be applied to the inner ring’s centre of mass, is 
introduced. For each step of the procedure it is required the iterative solution of 9Z + 3 
simultaneous non-linear equations – where Z is the number of the balls – to yield exact solution 
for contact angles, ball attitude angles, rolling radii, normal contact deformations and axial, 
radial, and angular deflections of the inner ring with respect the outer ring. While the focus of 
this work is obtaining the steady state forces and moments equilibrium conditions on the balls, 
under the selected loading, the numerical aspects of the procedure are treated in a companion 
paper. The numerical results derived from the described procedure shall be published later. 

1. Introduction 
Ball and roller bearings, generically called rolling bearings, are commonly used machine elements. 
They are employed to permit rotary motions of, or about, shafts in simple commercial devices such as 
bicycles, roller skates, and electric motors. They are also used in complex engineering mechanisms 
such as aircraft gas turbines, rolling mills, dental drills, gyroscopes, reaction and momentum wheels, 
and power transmissions. 

The standardized forms of ball or roller bearings permit rotary motion between two machine 
elements and always include a complement of ball or rollers that maintain the shaft and a usually 
stationary supporting structure, frequently called housing, in a radially or axially spaced-apart 
relationship. Usually, a bearing may be obtained as a unit, which includes two steel rings each of 
which has a hardened raceway on which hardened balls or rollers roll. The balls or rollers, also called 
rolling elements, are usually held in an angularly spaced relationship by a cage, also called a separator 
or retainer. 

There are many different kinds of rolling bearings. This work is concerned with single-row 
angular-contact ball bearings – see figure 1 – which are designed to support combined radial and 
thrust loads or heavy thrust loads depending on the contact angle magnitude. The bearings having 
large contact angle can support heavier thrust loads. The figure 1 shows bearings having small and 
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large contact angles. The bearings generally have groove curvature radii in the range of 52-53% of the 
ball diameter. The contact angle does not usually exceed 40o. 

 

 
Figure 1. Angular-contact ball bearing. 

 
This work is devoted to study of internal load distribution in a high-speed angular-contact ball 

bearing. Several researchers have studied the subject of internal load distribution in a statically loaded 
angular-contact ball bearing (see [1]-[10]). The methods developed by them to calculate distribution of 
load among the balls and rollers of rolling bearings can be used in most bearing applications because 
rotational speeds are usually slow to moderate. Under these speed conditions, the effects of rolling 
element centrifugal forces and gyroscopic moments are negligible. At high speeds of rotation these 
body forces become significant, tending to alter contact angles and clearance. Thus, they can affect the 
static load distribution to a great extension. 

Harris [11] described methods for internal loading distribution in statically loaded bearings 
addressing pure radial; pure thrust (centric and eccentric loads); combined radial and thrust load, 
which uses radial and thrust integrals introduced by Sjoväll; and for ball bearings under combined 
radial, thrust, and moment load, initially due to Jones. 

The first great contribution to the study of ball motion, sliding friction and internal load distribution 
in a high-speed angular-contact ball bearing must be credited to A B Jones [12]-[13]. Harris describes 
the orbital, pivotal and spinning ball’s motions and load distribution in ball bearings, in general 
reproducing the Jones’s developments. In this work the Jones’s works is revisited and differences are 
introduced under the yoke of critical analysis, which will be detailed. Then, particularly, in this work, 
a set of non-linear algebraic equations, which must to be solved using a numerical procedure, for ball’s 
motion, sliding friction and internal loading distribution computation in a high-speed, single-row, 
angular-contact ball bearing, subjected to a known combined radial, thrust and moment load, which 
must be applied to the inner ring center of mass, is introduced. For each step of the procedure it is 
required the iterative solution of 9Z + 3 simultaneous non-linear equations – where Z is the number of 
the balls – to yield exact solution for contact angles, ball attitude angles, rolling radii, normal contact 
deformations and axial, radial, and angular deflections of the inner ring with respect the outer ring. 
While the focus of this work is obtaining the steady state forces and moments equilibrium conditions 
on the balls, under the selected external loading, the numerical aspects of the procedure are treated in a 
companion paper. The numerical results derived from the described procedure shall be published later. 

2. Mathematical model 
Having defined in other works analytical expressions for bearing geometry and the contact stress and 
deformations for a given ball or roller-raceway contact (point or line loading) in terms of load (see, 
e.g., [12]) it is possible to consider how the bearing load is distributed among the rolling elements. In 
this section a specific internal loading distribution resulting from a combined radial, thrust, and 
moment external load, which must be applied to the center of mass of the inner ring of a high speed 
ball bearing, is considered. 
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The figure 2 shows the displacements of an inner ring related to the outer ring due to a generalized 
loading system including radial, axial, and moment loads. The figure 3 shows the relative angular 
position of each ball in the bearing. 

 

 

 

 

Figure 2. Displacements of an inner 
ring (outer ring fixed) due to a 

combined radial, axial, and moment 
external loading. 

 Figure 3. Ball angular positions in the radial plane that is 
perpendicular to the bearing’s axis of rotation,  = 

2 /Z, j = 2 (j−1)/Z, j = 1…Z, in which Z is the number 
of balls. 

 
Let a ball bearing with Z balls, each with diameter D, symmetrically distributed about a pitch circle 

according to figure 3, to be subjected to a combined radial, thrust, and moment load applied to the 
inner ring’s center of mass. Then, a relative axial displacement, a, a relative angular displacement, , 
and a relative radial displacement, r, between the inner and outer ring raceways may be expected 
according figure 2. Let  = 0 to be the angular position of the maximum loaded ball. 

Under zero load the centers of raceway groove curvature radii are separated by a distance A given 
by 

,      (1) 

in which fo, fi are the conformities for outer and inner raceways, respectively. 
Under an applied static load, the distance s between centers will increase from A to A plus the 

amount of the contact deformation i plus o, as show by figure 4. The line of action between centers is 
collinear with A. If, however, a centrifugal force acts on the ball, then because the inner and outer 
raceway contact angles are dissimilar, the line of action between raceway groove curvature radii 
centers is not collinear with A, but is discontinuous as indicated by figure 5. It is assumed in figure 5 
that the outer raceway groove curvature center is fixed in space and the inner raceway groove 
curvature center moves relative to that fixed center. Moreover, the ball center shifts by virtue of the 
dissimilar contact angles. 

The figure 5 when compared with similar figures in [11] and [13] shows minor differences. The 
inner contact angle must be ij + cos j rather than ij, to take into account the tilting of the rigid inner 
ring with respect the rigid outer ring, during the external loading application. Furthermore, since the 
problem is to be solved numerically, no makes sense to linearize the distances between the final and 
initial inner raceway groove curvature center positions, as done in previous works. 

In accordance with figure 5 the distance between the fixed outer raceway groove curvature center 
and the final position of the ball center at any ball location j is 
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.      (2) 

Since ro = foD, 
.     (3) 

 

 

Figure 4. (a) Ball-raceway 
contact before loading; (b) Ball-

raceway contact under load. 

 Figure 5. Positions of ball center and raceway groove 
curvature centers at angular position j with and without 

applied load. 
 

Similarly, the distance between the moving inner raceway groove curvature center and the final 
position of the ball center at any ball location j is 

,    (4) 

in which oj and ij are the normal contact deformations at the outer and inner raceway contacts, 
respectively. 

In accordance with the relative axial displacement between inner and outer rings mass centers, a, 
and the relative angular displacement , the axial distance between inner and outer raceway groove 
curvature centers at ball position j is 

sxj = Asin f + a + isin cos j,      (5) 
in which 

i = ½de + (fi – ½)Dcos f      (6) 

is the radius to locus of inner raceway groove curvature centers, de is the unloaded pitch diameter, and 
f is the unloaded contact angle. Further, in accordance with the relative radial displacement between 

inner and outer rings mass centers, r, and the relative angular displacement , the radial distance 
between inner and outer groove curvature centers at each ball location j is 

szj = Acos f + rcos j – i(1 – cos ) cos2
j.    (7) 

Since the iterative techniques of the Newton-Raphson method will be used to solve the associated 
nonlinear equations, the angles oj and ij are best stated in terms of the co-ordinates V and W, in figure 
5. Then 

,       (8) 

,      (9) 
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,    (10) 

.    (11) 

Similarly, the ball angular speed about its own center pitch and yaw angles, j and ’j, are best 
stated in terms of the ball angular velocity components: x’j, y’j, and z’j; in which x’, y’, and z’ are 
the axes of the coordinate frame whose origin is at the ball center; x' is parallel to the longitudinal axis 
of the bearing around which the balls circulate in its orbital motion, and z’ is the radial axis. Then 

,     (12) 

,     (13) 

,      (14) 

.      (15) 

Using the Pythagorean Theorem, it can be seen from figure 5 that 

,   (16) 

.    (17) 
From (12)-(15) 

, .  (18) 

For steady state operation of a ball bearing at high speed, the forces and moments acting on each 
ball are as shown by figure 6. 

 

 

Figure 6. Ball loading at angular position 
j. 

 Figure 7. Forces and moments about the inner ring 
center of mass. 

 

XVII Colóquio Brasileiro de Dinâmica Orbital – CBDO IOP Publishing
Journal of Physics: Conference Series 641 (2015) 012017 doi:10.1088/1742-6596/641/1/012017

5



 
 
 
 
 
 

The normal ball loads are related to normal contact deformations by 

,  ,    (19) 

in which Koj and Kij are functions of contact angles [11]. 
From figure 6 considering the three axes equilibrium forces: 

,  (20) 
,  (21) 

,     (22) 

Substituting (8)-(11) and (19) into (20)-(21) yields 

,   (23) 

.  (24) 

From figure 6 considering the three axes equilibrium moments: 

, (25) 
, (26) 

.     (27) 

Substituting (8)-(11) into (25)-(26) yields 

,   (28) 

.  (29) 

The centrifugal force acting on the ball at angular position j is given by [11] 

,      (30) 

in which m is the mass of ball, 
   (31) 

is the operational ball’s pitch diameter at position j, and mj is the absolute orbital speed of the ball 
about of the bearing axis. 

Substituting the identity  = ( mj/ )2 2 in (30) gives 

,       (32) 

in which  is the absolute angular velocity of the rotating ring. 
For the outer race to be stationary mj = – oj,  = ij + mj, 

,       (33) 

and 

,   (34) 
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in which ij, oj are the angular velocities about the bearing axis of the inner and outer rings with 
respect to the ball at position j, and ,  are the inner and outer rolling radii [11]. 

Likewise, for the inner race to be stationary mj = – ij,  = oj + mj, 

         (35) 

and Rj/  is given by (34) with opposite sign. 
Similarly, the gyroscopic moments acting on the ball at angular position j are given by [11] 

,     (36) 

and 

,     (37) 

in which J is the ball’s mass moment of inertia. 
The friction forces due to sliding in the x and y-directions of inner and outer ball-raceway elliptical 

contact areas are given by [11] 

,  (38) 

,  (39) 

,  (40) 

,  (41) 

in which  is the friction coefficient; aij, bij, aoj, and boj are semimajor and semiminor-axes of inner and 
outer pressure ellipses; xij, yij, xoj, yoj are the co-ordinates of an element of area, dydx, inside the contact 
ellipse, which has a resultant velocity of slip V of the race on the ball acting at the angle  with respect 
to the y-direction, which are given by 

,    .   (42) 

Vxij, Vxoj, Vyij, Vyoj, sij, and soj are the relative linear and angular slip velocities of inner and outer 
races with respect to the ball located at position j. The terms involving these velocities for use in (42) 
are given by [11] 
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,  (43) 

,  (44) 

,  (45) 

,    (46) 

in which Ri and Ro are the curvature radii of deformed surfaces, given by 

,   .     (47) 

The total frictional moments of the friction forces about the normal at the center of the contact 
ellipse are [11] 

, (48) 

. (49) 

The moments of the friction forces about the y’-axis are [11] 

,  (50) 

. (51) 

The frictional moments about an axis through the ball center perpendicular to the line defining the 
contact angle, which line lies in the x’z’-plane, are [11] 
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,  (52) 

. (53) 

Equations (16)-(18), (22)-(24) and (27)-(29) may be solved simultaneously for Vj, Wj, oj, ij, r’oj, 
r’ij, x’j, y’j, and z’j at each ball angular location once values for a, r, and  are assumed. 

An iterative procedure is to be used to solve the equations simultaneously. Since Koj and Kij are 
functions of contact angle, equations (8)-(11) may be used to establish Koj and Kij values iteratively. 

To find the values of a, r, and , it remains to establish the equilibrium conditions of forces and 
moments about the inner ring center of mass, as shown by figure 7, which are 

,   (54) 

,   (55) 

       { i / i  

} = 0 ,    (56) 

in which Fa, Fr, and M are external forces and moment applied to the inner ring center of mass. 
Having computed values for Vj, Wj, oj, ij, r’oj, r’ij, x’j, y’j, and z’j at each angular position and 

knowing Fa, Fr, and M as input conditions the values of a, r, and  may be computed by equations 
(54)-(56). After obtaining the primary unknown quantities a, r, and , it is necessary to repeat the 
calculation of Vj, Wj, oj, ij, r’oj, r’ij, x’j, y’j, and z’j, until compatible values of primary unknown 
quantities a, r, and  are obtained. 
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