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Abstract. To assist in the investigation of the triple asteroid system 2001-SN263, the deep 
space mission ASTER will carry onboard a laser altimeter. The instrument was named ALR 

and its development is now in progress. In order to help in the instrument design, with a view 

to the creation of software to control the instrument, a package of computer programs was 

produced to simulate the operation of a pulsed laser altimeter with operating principle based on 

the measurement of the time of flight of the travelling pulse. This software Simulator was 

called ALR_Sim, and the results obtained with its use represent what should be expected as 

return signal when laser pulses are fired toward a target, reflect on it and return to be detected 

by the instrument. The program was successfully tested with regard to some of the most 

common situations expected. It constitutes now the main workbench dedicated to the creation 

and testing of control software to embark in the ALR. In addition, the Simulator constitutes 

also an important tool to assist the creation of software to be used on Earth, in the processing 
and analysis of the data received from the instrument. This work presents the results obtained 

in the special case which involves the modeling of a surface with crater, along with the 

simulation of the instrument operation above this type of terrain. This study points out that the 

comparison of the wave form obtained as return signal after reflection of the laser pulse on the 

surface of the crater with the expected return signal in the case of a flat and homogeneous 

surface is a useful method that can be applied for terrain details extraction. 

1. Introduction 
In the last years, many space missions dedicated to the investigation of small bodies of the solar 

system occurred, while others are still in progress or being planned. Among these, missions NEAR-

Shoemaker (1996-2001), Hayabusa (2003-2010), Rosetta (in progress; scheduled to end in December 
2015), Hayabusa 2 [1] (scheduled to launch in 2015). 

For the most part, these and other missions that have not been mentioned carry on board at least 

one laser altimeter (laser rangefinder) as an instrument of scientific research (shape, topography, mass, 
etc.) and aid to navigation, in the phase of greater proximity to the target. As an example, the LIDAR, 

used in the Hayabusa mission [2, 3]. 

In general terms, these devices are used for determining the distance to the target, within their 

reach, which is done from the firing of laser pulses towards the target and the detection of signals that 
return after reflection on the target surface. As an instrument of scientific research, the shape of the 

pulse that returns after reflection on the surface contains information about the roughness (topography) 

of the lighted area. This information collected over wide areas of the target surface is used in the 
construction of a 3D model of the terrain. 
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Inserted in this sector of contemporary space exploration, the mission ASTER was planned in 

cooperation with Russia to be the first Brazilian deep space mission. This mission intends to 

investigate the triple asteroid 2001-SN263 and has its launch date previously planned for 2017 [4, 5]. 

Among the instruments that will take part in this mission, the laser altimeter, named ALR (ASTER 
Laser Rangefinder), is being designed to meet the mission objectives concerning the investigation of 

the shapes, surfaces topographies and masses of the asteroids, together with the calculation of their 

masses, in addition to supporting the proximity navigation. Reference [6] Brum et al (2011) contains 
more detailed information about the instrument design.  

The ALR is planned to be a solid state pulsed laser of Nd: YAG, diode pumped and Q switched. 

The frequency of the light emitted is 1064 nm. The modeling and simulation of the operation of a laser 

altimeter with such features was the subject of a previous article [7]. These studies, still in progress, 
aim at the creation of the various subroutines that will compose the control software of the apparatus, 

to be embedded in the Signal Processing and Control (electronic) Unit of the instrument (SPCU). The 

simulation includes the instrument, its operation and the environment in which it will supposedly 
operate. The fundamentals involved in the operation of a laser altimeter and the investigation of 

surfaces with its use are deeply discussed in [8].   

With use of the MATLAB environment [9], a software Simulator was created to serve as a 
laboratory useful in the understanding, implementation and testing of all the concepts involved in the 

detection of distances using instruments similar to the ALR. The ALR_Sim Simulator constitutes the 

main result of this effort and brings together all the programs previously created. For more details on 

the program, see [10].  
This article describes the modeling performed and the simulations conducted with use of the 

ALR_Sim, in order to obtain and evaluate what should be the expected results of the instrument 

operation on a surface with crater, and for an emitted pulse with exponential characteristic, which 
more closely approximates the real pulse emitted by a Q-switched solid-state laser.  

 

2. Modeling and simulation  

The complete simulation steps were described in details in the cited papers. The Simulator package 
covers all major expected conditions involving the operation of the instrument, which are: 

- the physical features of the instrument (parameters, specifications and transmitter-detector 

characteristics); 
- the features of the environment where the instrument will operate; 

- the physical features of the target surface. 

 
2.1. Emitting pulse modeling   

The emitted pulse model that best represents the Q-switched laser emission is given by the exponential 

distribution. This curve has emitted power rise led by a quadratic term, followed by exponential 

emission decay [11]. 

           
   

 
   (1) 

   

In Equation (1), B is an adjusting factor for the peak value of the emitted power,  and  are adjusted 

curve parameters to obtain Pmax = 1 kW, p = 10 ns (pulse width at half maximum power).  

The pulse modeling for the general case, i.e., when one chooses Pmax, p, tmax (time to reach 
maximum power) and tf (the larger time span to complete the  decay), keeping the exponential feature, 

demands the determination of proper values for B,  and  for any case, which represents a complex 
matter, once these variables are interdependent. To achieve this goal, in addition to P3(t), described 

previously, a second curve, P4(t), was created using a smoothed cubic spline applied to the points in 
Table 1, created to represent (model) the characteristics of the expected emitted pulse. These points 

were chosen to model perfectly the emitted pulse curve, according to the available knowledge of it 
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today. Any modifications or advances in this knowledge can be inserted here. The function "CSAPS" 

(smoothed cubic spline) of MATLAB was used for this purpose 

 

Table 1. Points used to model the shape of the exponential emitted pulse. 

t (s) ti t1 tmax1 tmax2 t2 t3 tf 

P (W) 0 Pmax/2 Pmax Pmax Pmax/2 0 0 

 
In Table 1,  

ti - is the starting moment of emission of the laser pulse (defined by the user);  

t1 - is the moment (calculated) when the pulse reaches half of its peak power, Pmax/2, in the rising 
part of the curve, considering exponential emission; t1 is given by 

               
  

  
         

  

 
  

  

; 

t2 - is the moment when the pulse reaches half of its peak power, Pmax/2, in the descent part of the 

exponential curve;  
tmax1 and tmax2 – subdivisions of tmax, instant of time corresponding to the maximum power value; 

created to assure Pmax as the maximum value of the adjusted curve, with tmax1= tmax-0.1dt and 

tmax2=tmax + 0.1dt; 

t3 and tf – used to model de curve decay (more abrupt or less), t3 = t2 + p; and tf = t3+ p. 
 

2.2. Surface with crater modeling 

The modeling of the surface with crater followed the profile of the lunar impact crater Eudoxus [12]. 

A sample of 45 points of half of the crater profile was taken resulting in the set of points (Xcrat, Zcrat). 

These, in turn, were used to adjust a curve of type "Gauss 5" smoothed (internal function of 
MATLAB).  The smoothed curve adjusted to the points of the crater, z = f (x), 0 < x < 40 km, was 

used to determine the surface of revolution around the +z-axis. The crater surface points were obtained 

from a grid of equally-spaced points in the xy-plane with x and y taken between  -40 and +40 metric 
units (km, m, etc.). For each of the internal points within the grid, the value of z=f(x, y) was 

calculated.  

The model of the "N reflective point sources of the incident light", created for this simulation [7, 
9], requires the identification of a set of points on the surface to be taken as sources of the light that 

returns to the detector. The determination of these points was made by taking the intersection points 

between the straight lines connecting the instrument transmitter, located, in the adopted frame, at the 

point A = (0, 0, R), to each point Pi = (xi, yi, 0), of the flat footprint (defined and calculated in [7]), 
when these lines are prolonged until they reach the surface z = f (x, y), representing the crater surface 

(below the flat surface). Each intersection determines a point Pi’ = (xi’, yi’, zi’) of the crater surface, 

zcrat = f(x,y). 
 The solution of the system created from the equations of the crater and of the line r, from A to 

each point Pi of the flat footprint, offers the set of intersection points Pi’, related to each point Pi. To 

calculate each of these points, the numeric solver of systems of equations available in MATLAB was 

used. The crater determined through these points is shown in Figure 1. In this case, the value of N 
(1396 points) is a consequence of the chosen (input) value for L, the side dimension of one element of 

area on the flat footprint. 

The equations of the line r and of the crater are given, respectively, by (2) and (3),  
 

 

  
 

 

  
  

     

 
 

(2) 

 

Zcrat = E1 + E2, (3) 
 

where E1 and E2 given by 
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    Figure 1. N=1396 point sources that reflect the light incident on the surface of the crater. 
 

 

 

Once identified the points Pi’, that are considered as emitting point sources of the light incident on 

the crater surface, one has also to calculate the cosine of the angle between the incident light and the 

normal to the surface at each point Pi’. This value is necessary for the purpose of calculating the 

intensity of the diffuse light that returns to the detector. Traditional methods in analytic geometry are 

used for this purpose. Thus, 

 cos() =   vet .   , (6) 

 

where    vet =          ,        
  

  
   

  

  
    , z = zcrat and     =        . 

 

 

Identified the points Pi’, i=1,...,N, and the angles between the normal to the surface at each point 

Pi’ and the direction that returns to the detector, the contribution of each source of light from the 
surface of the crater can be calculated by the same procedure described before for other types of 

surfaces.  

 

 

3. Results 

An improved version of the ALR_Sim was created to include the functions related to the surface with 

crater. In the simulations performed, the following input data was used: 
 

- Emitted pulse: exponential adjusted with 1,000 Watts of peak intensity and 10 ns in width (at 

half power); 
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- Emitter/detector altitude: 15,000 m; 

- Approximate dimensions of target surface in the crater: 6 m diameter by 0.3 m depth; 

- L=25 cm; side dimension of each element dA of the flat footprint area. 

For the purpose of performing a comparative analysis, the results obtained with the same 
parameters in the case of a flat surface are presented in Figure 2. 

 

 
 

Figure 2(a). Response curve obtained from the 
return of the emitted light that reaches the flat 

footprint, distant 15 km from the transmitter, and 

returns to the receiver. 

Figure 2(b). Response curve obtained in the case 
when the surface of the crater is illuminated 

centrally, in the same conditions of Figure 2(a). 

 

It is observed here that the expected return signal, after reflection of the emitted pulse on a flat and 
homogeneous surface (constant reflectivity), should mirror the emitted pulse. Thus, the number of 

subdivisions in the sampling of the emitted pulse equals the number of subdivisions of the return 

signal (in Figure 2 (a), this means 21 subdivisions = 21 intervals 1 ns wide), the shape of the return 

wave follows the shape of the emitted wave, the intensity depends only on the distance and on the 
medium (reflectivity and absorption), the shortest distance between source and target is given by the 

time interval between the pulse emission starting moment,  and the moment of arrival of the first 

return signal (dmin=c*(t1r – t1e)/2), and the longest distance between source and target is given by the 
interval of time between the last sampled moment of pulse emission and the last moment of arrival of 

return signal (dmax=c*(tfr - tof)/2). The difference between these two values gives the greatest difference 

of level of the lighted terrain. Of course, this account applied to the flat surface results null.  
With regard to the surface with crater, the same emitted pulse is used to generate the same flat 

footprint. The rays of light coming from the emitter get through this plan and reach the surface of the 

crater, where they are identified as points of this surface and are considered as point sources of (part 

of) the incident light, as shown in Figure 1. Figure 2(b) shows the waveform obtained as return signal 
in this case. Comparing the two waveforms (Figure 2), their similarity is clear. Differences 

encountered are due to the crater features that can be, this way, extracted through a comparative 

analysis. Important items here to be analyzed are the differences in the power intensities which cause a 
“flattening” in the shape of the returning wave, and also the spread of this wave. 

 

4. Conclusions and comments 
The ALR_Sim Simulator was improved to include surfaces with crater and used to simulate the 
response of the operation of the instrument over one such surface. The models involved are presented 
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and the results show that this type of surface causes flattening and spreading in the waveform 

received, when the return signal is compared with the expected for a flat and homogeneous surface.  

The comparative analysis used here is indicated as a useful method to the extraction of surface 

features and can be used also to understand and extract the details of any type of surface. 
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