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Abstract. The trajectory of a spacecraft going to the periapsis of its orbit around the smaller 

body of a binary system is estimated from the observed data using a Kalman Filter. 

Simulations of the trajectories will be made to generate the data of the spacecraft position. 

When observed from the Earth, using a fixed star as a reference, we have the spacecraft 

position as an angle function ϕ. This is the angle between spacecraft position vector and the 

star position vector. The result shows that Kalman Filter can be used successfully for trajectory 

estimation, if adequate accuracy is available for the angle observations. 

1.  Introduction 

When a satellite passes next to a celestial body and uses the gravity of this body to gain or lose energy, 

there is a maneuver called Swing-by [1,2]. There are different approaches to use this maneuver. It can 

be propelled or not, can vary the activation point of the propellant and can be applied to circular or 

elliptical orbits. There are several works available in the literature about this problem [3-7]. 

In this paper we will estimate the spacecraft trajectory going to the periapsis of its orbit around the 

smaller body of a binary system. We use observed data and used a Kalman Filter [8,9]. We will 

estimate only the trajectory part before the passage by the periapsis, because there are multiple options 

after that point, e. g., the spacecraft can be captured, crash with the body or continue its trajectory. 

We consider the orbital plane of the binary system as a reference plane, and the system origin is 

choose as the center of mass of the two main bodies. 

To have the observational data, simulations are made. These simulations were performed by 

integrating a trajectory around the smaller body of the binary, using the model given by the restricted 

three body problem. When observed from Earth, using a fixed star as a reference, we have the 

spacecraft position as a function of an angle, given by the scalar product of the spacecraft position 

vector ( sr ) and the star position vector ( er ).  

The data describing the position for each instant of the trajectory, inserted with random errors, will 

be the observational data to be used by the Kalman Filter, to estimate the correct trajectory. 

Therefore, the goal of this work is to obtain an algorithm that estimates the correct trajectory of a 

spacecraft, around a binary system, from this type of observed data. 

2.  Methods 

The first step was to simulate the observations. We considered the radius of the periapsis of the 

trajectory of the spacecraft equals to 10 radius of the smaller body of the binary. The canonical system 

of units was used. Numerical integration were made to obtain the results.  
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The observations are the angle (ϕ) that describes the spacecraft's position at each instant of time, 

observing the Earth, having a fixed star as a reference. The ϕ value was calculated by the scalar 

product of the spacecraft position vector ( sr ) (originated on the Earth) and the star position vector ( er

). Being ),,(
zcmycmxcm rrrcmr the binary system center of mass position vector (origin on the Earth), 

),,(
zeyexe rrrer the star position vector, rrr cms   and ),,( zyxr  the spacecraft position vector 

with origin at the binary system center of mass. Since, the spacecraft moves in fixed plane )0( z . 

Then ϕ is given by: 
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2.1 Kalman Filter 

Kalman filter is a mathematical method developed by Rudolf Kalman, in 1960, to estimate states that 

tend to be closer to actual values, from measurements along the time. There are related different 

versions of the filter, and in this work we used the extended Kalman filter, that treats nonlinear 

models. This version generates reference trajectories that are updated with every processing 

measurements. Given the dynamical system: 
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the spacecraft state is 𝑋 = [𝑥 𝑦 𝑥̇ 𝑦̇] = [𝑥1 𝑥2 𝑥3 𝑥4], the equations of motion are given by the 

restricted three body problem and 𝜔 is noise of the process that has normal distribution with zero 

mean and covariance Q (𝜔 = 𝑁(0,𝑄)). 

The measurement model is given by: 

 

                                                               𝑔 = ℎ(𝑋) + 𝜈                                                                          (5) 

 

being 𝑦 the measurements vector, ℎ(𝑋)  =  𝜙(𝑋), where ℎ(𝑋) relates the actual states with the 

observed states and 𝜈 is the measurements noise, assumed to be a white noise with zero mean and 

covariance R (𝜈 = 𝑁(0, 𝑅)). 

The Kalman filter is divided in time-update and measurement-update cycles. The time-update 

process propagates the state and the covariance from the time 𝑡𝑘−1 to 𝑡𝑘, using the equations: 
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                                                                              𝑋̇ = 𝑓(𝑋)                                                                 (6) 

                                                                             

                                                           𝑃𝑘 = 𝜑𝑘,𝑘−1𝑃̂𝑘−1𝜑𝑘,𝑘−1
𝑡 + Γ𝑘𝑄𝑘Γ𝑘

𝑡                                            (7) 

 

where 𝑋 is the propagated state vector, 𝑃 is the propagated covariance matrix, 𝑃̂ is the former updated 

covariance matrix and 𝜑 is the transition matrix, given by 𝑒𝐹Δ𝑡, being 𝐹 the jacobian matrix of 𝑓 with 

respect to 𝑋 (𝐹 =
𝜕𝑓

𝜕𝑋
)  and Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 is the time interval. The measurement-update process, at 

this stage, corrects the state and the covariance for the instant 𝑡𝑘 in accordance with the 

measurement 𝑔𝑡𝑘
, according to the equations: 

 

                                                                  𝐾 = 𝑃𝐻𝑡(𝐻𝑃𝐻𝑡 + 𝑅)−1                                                      (8) 

                                                         

                                                                          𝑃̂ = (𝐼 − 𝐾𝐻)𝑃                                                            (9) 

 

                                                                  𝑋̂  =  𝑋 + 𝐾[𝑔 − ℎ(𝑋)]                                                     (10) 

 

 

where 𝐻 is the jacobian matrix of ℎ(𝑋) with respect to 𝑋 (𝐻 =
𝜕ℎ

𝜕𝑋
), 𝐾 is the Kalman gain, 𝐼 is the 

identity matrix and 𝑋̂ is the estimated state vector. 

3.  Results 

For the results that follow we adopt the initial covariance matrix:     

                             

                                                            𝑃0 = [

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

],                                                     

 

the matrix Q of the process noise is given by 

 

𝑄 = [

10−5 0 0 0
0 10−5 0 0
0 0 10−4 0
0 0 0 10−4

], 

 

and 𝑅 =  10−10. 

The following data will show the estimated trajectory. Figure 1 shows the measurement residues of 

the time-update and measurement-update state as a time function. The residue is given by the 

difference between the measurements and the function that relates the actual states with the observed 

states, i.e., 𝑔 − ℎ(𝑋) for the residue of the propagated state vector (time-update process) and 𝑔 −

ℎ(𝑋̂) for residue of the estimated state vector (measurement-update process). The data are in canonical 

units. 
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(a)  (b) 

Figure 1. Measurement residues of the (a) time-update and (b) measurement-update state as a time 

function. 

     

 

Figure 2 and 3 show the standard deviation and error for position and velocity, respectively. The 

error is the difference between the actual state and the estimated state. 

 

 

 
Figure 2. Standard deviation and error of the measurement-update of position. 
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Figure 3. Standard deviation and error of the measurement-update of velocity. 

 

A decrease in the value of the standard deviation means that the estimated value approach the 

actual value. Figure 4 shows the angle ϕ (in rad), for the actual, estimated and measured trajectory, as 

a function of time. 

 

 

 

 
Figure 4. Position of the spacecraft given by the angle ϕ (in rad). 
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4.  Conclusions 

The spacecraft trajectory that makes a Swing-By maneuver around a binary system, estimated by the 

Kalman filter, was presented. The maneuver was estimated until the orbit periapsis, because there are 

multiple options for the sequence from there, like the capture of the spacecraft, collision or escape. 

Measurements were obtained from observations made from Earth, given by the angle between the 

spacecraft's position and a fixed star. 

It is shown that such a technique can be used successfully for trajectory estimation, if adequate 

accuracy is available for the angle observations. Besides, the Kalman filter was important to reduce 

the error in estimating the correct trajectory. 
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