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Abstract. A study of optimal bi-impulsive trajectories of round trip lunar missions is presented 

in this paper. The optimization criterion is the total velocity increment. The dynamical model 

utilized to describe the motion of the space vehicle is a full lunar patched-conic approximation, 

which embraces the lunar patched-conic of the outgoing trip and the lunar patched-conic of the 

return mission. Each one of these parts is considered separately to solve an optimization 

problem of two degrees of freedom. The Sequential Gradient Restoration Algorithm (SGRA) is 

employed to achieve the optimal solutions, which show a good agreement with the ones 

provided by literature, and, proved to be consistent with the image trajectories theorem.   

1.  Introduction 

The problem of transferring a space vehicle from one orbit to another orbit has been growing in 

importance in last decades. The solution of this problem is of great concern to the space science. Also 
commercial applications can be found such as: the maintenance of telecommunications satellites, GPS 

constellations satellites, geostationary satellites and others [7]. However, the science development is 

the greatest benefit of this field because the trajectories design is one of many keys necessary to 
perform a space exploration and solve fundamentals issues of science, including the origin of life on 

Earth.     

In the majority of the examples above the actuators of the space vehicle are assumed impulsive, 
which means that they produce an instantaneous velocity increment to put the vehicle in the desired 

trajectory. The determination of the velocity increments of the space vehicle depends upon the 

dynamics constraints utilized in the mathematical modeling of the system. These dynamics constraints 

can be divided in four class according to the literature [7]: two body model, perturbed two body 
model, three body model and N-body model. The two body model is the simplest one and it is more 

studied among all because it provides a good approximation for more complex problems and it holds 

analytical solutions. The so-called Hohmann transfer appears from this model [8]. The four-body 
model was studied by several researches [3] [10] [2]. Da Silva Fernandes and Marinho [2] have 

employed the gradient algorithm coupled with the Newton-Raphson method to obtain low energy 

Earth-Moon transfer with the Sun’s perturbation.  

 To accomplish the optimization and to obtain the desirable trajectory it is necessary to provide an 
initial guess for the solution. For lunar or interplanetary mission, the well-known patched-conic 

approximation can be used to obtain the initial guess. It can be also applied for preliminary mission 

analysis [1]. 
The focus of the present work is to calculate and analyze optimal round trip lunar missions based 

on the patched-conic approximation, which has a more detailed geometry. The solution obtained by 

this model can be used to feed the optimization algorithm in more complex models.       
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2.  Objectives 

The main purpose of this work is to study a full lunar patched-conic approximation considering a 

round trip mission and utilize this model to optimize the fuel consumption of the space vehicle by the 

application of the Sequential Gradient Restoration Algorithm (SGRA). 

3.  Formulation of patched-conic approximation 

The aim of this section is to explain the round trip lunar patched-conic approximation and the 

optimization problem related to it. To achieve this purpose the outgoing trip is explained first. It 
consists of transferring a space vehicle from a circular low Earth orbit (LEO) to a circular low Moon 

orbit (LMO) minimizing the fuel consumption, represented by the total velocity increment. Next, the 

return flight is formulated similarly to the outgoing trip, but transferring the space vehicle from a 

LMO to a LEO. The velocity increments are assumed to be instantaneous and tangential to the 
corresponding orbits. 

3.1.  Outgoing Trip 

The patched-conic approximation is based on the two-body dynamics, in which the motion of the 
space vehicle is described by a conic, and it uses the concept of sphere of influence. It is a simple 

strategy of patching two conics to describe the entire trajectory. In the lunar patched-conic 

approximation an ellipse and a hyperbole are used. The ellipse describes the motion of the space 
vehicle when the Earth gravitational field is considered (geocentric phase), and, the hyperbole 

describes the motion when the Moon gravitational field is considered (selenocentric phase). To obtain 

the complete trajectory of the relative motion of the vehicle, the two conics are connected together at 

the edge of the sphere of influence of the Moon. Similar to the Hohmann transfer, the patched-conic 
approximation involves two impulses with the total increment of velocity representing the fuel 

consumption [4]. A mathematical formulation of the patched-conic approximation for the outgoing 

trip can be found in [1]. The following hypotheses are assumed: 
 

1) The Earth planet is fixed in space; 

2) The Moon orbit around the Earth is circular; 

3) The flight of the space vehicle lies in the orbital plane of the Moon; 
4) The gravitational field of the Earth and the Moon are central and obey the inverse square law; 

5) The transfer trajectory has two distinct phases: the geocentric phase, which it starts 

immediately after the first velocity increment; and, the selenocentric phase, which begins 
when the vehicle reaches the sphere of influence of the Moon; 

6) The two impulses model is considered. Each velocity increment is applied tangentially to the 

initial orbit (LEO) and the final (LMO) orbit. 
 

The patched-conic approximation for the outgoing trip is completely determined by four variables: 

the radial distance   , the velocity   , the flight path angle    of the space vehicle at the point of 

insertion in the geocentric trajectory; and, the phase angle   of the vehicle with the Earth relatively to 
the Moon at the moment when the space vehicle reaches the sphere of influence of the Moon. From 

the hypothesis 6),     . 

3.2.  Return Trip 
The mathematical formulation of the return trip is basically the same as the outgoing mission, but with 

the selenocentric trajectory as the starting path. The hypotheses remain the same; however, the fifth 

hypothesis can be better stated as it follows: 

5) The transfer trajectory has two distinct phases: the selenocentric phase, which starts 
immediately after the first velocity increment; and, the geocentric phase, which begins when the 

vehicle reaches the edge of the sphere of influence of the Moon. 
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The return trip based on the patched-conic approximation is completely solved when the set of 

variables               is known. Unlike the outgoing trip, these variables are related with the 

beginning of the return mission so that the radial distance   , the velocity    and the flight path angle 

   are related at the point of insertion in the selenocentric trajectory.    is the same phase angle but 

with a distinct configuration. Again, according to the hypothesis 6), the flight path angle    is 0.  

3.3.  Optimization Problem based on Patched-Conic Approximation 

The patched-conic approximations for the outgoing and return trips, as mentioned before, are 

determined through a boundary value problem, in which the iteration variable is   . The variables   , 

   and    must be previously specified. In order to solve this problem one can use the Hohmann 

transfer as initial guess of   . If the set         is prescribed, then there is just one solution for each 

value of    if the solution exists. In this way, an optimization problem can be enunciated in order to 

determine some value of    which minimizes the total fuel consumption, represented by the total 

velocity increment. The complete optimization problem is stated as below: 

“Determine the set of variables         which minimizes the function 

 

                              
 

subjected to the constraint 
 

                  

 

where       is the velocity increment at the circular low Earth orbit (LEO) and       is the velocity 

increment at the circular low Moon orbit (LMO). Note that        for the outgoing trip, and, 

       for the return trip, where     and     are, respectively, the distance at the periapsis of the 

selenocentric trajectory in the outgoing trip, and, the distance at the periapsis of the geocentric 

trajectory in the return trip. In both cases    is the prescribed radius” 

The Sequential Gradient Restoration Algorithm (SGRA) is employed to solve this two degrees of 
freedom optimization problem. This algorithm has two distinct phases [6]: in the gradient phase, a 

displacement is applied in order to reduce the value of the function, but only satisfying the constraints 

at first order. In the restoration phase, a displacement is applied in order to restore the constraints, 
which is originally not completely satisfied due to the displacement of the gradient phase. To initialize 

this algorithm, an initial guess that satisfies the constraint must be provided [5]. Therefore, the 

boundary value problem must be solved in order to obtain this initial guess and to ensure the 

algorithm’s convergence. The boundary value problem consists of determining    to a specified set 

        such that it satisfies the final condition       to a certain   .   

4.  Results 
This section shows the main results obtained to the problem of minimizing the fuel consumption of a 

space vehicle in a round trip mission from Earth to Moon. The outgoing and the return trips are 

considered separately by patched-conic approximations. The path of the space vehicle in the LMO can 
be clockwise or counterclockwise. All the trajectories calculated are direct ascent. The LEO altitude is 

specified at 463 km, which corresponds to the altitude of the International Space Station, and the LMO 

altitude is set at 100 km. The table 1 illustrates a list with the values of others parameters necessary to 

specify the entire problem. 
In the lunar patched-conic approximation, the derivatives of the expressions involved in the 

boundary value problems and in the optimization problem can be obtained analytically and 

numerically (centered differences). These two approaches are implemented in this work and good 
agreement of the results has been noticed. Before the optimization problem, the boundary value 
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problem has been solved to verify the behavior of the curve of the total velocity increment with 

respect to    as it is illustrated in figure 1. The results of the outgoing trip are analyzed first.  

 

Table 1. Parameters specifications 

  (Moon’s angular velocity)                  

  (Moon’s velocity)            

   (Earth radius)           

  (Moon radius)         

   (Earth’s gravitational parameter)               

  (Moon’s gravitational parameter)                

  (Earth-Moon mean distance)           

   (Moon’s sphere of influence radius)          

 
 

 
 

Figure 1. Outgoing trip. LEO = 463 km, LMO = 100 km. 

 

 
The aspect of the curve shown in figure 1 remains the same for the others values of LMO and LEO 

altitudes. Note from this figure that it is possible to find a value to    which minimizes         in the 

both cases: clockwise and counterclockwise arrival. So, the SGRA is employed to perform this task. 

The tolerance in the Newton-Raphson algorithm is     .  In the optimization problem it is used a 

tolerance of       with numerical derivatives and a tolerance of       with analytical derivatives. 

The tolerance of the restoration phase in the SGRA is set in      .  
The table 2 compares the optimized results of the patched-conic approximation obtained in this 

work with some results provided by the literature. The symbol ‘[4]’ in the tables refers to the results 

given by [1]; and the expression ‘Miele’ corresponds to the results given by [6]. According to this 

table, a good agreement is noticed between the results obtained in the present work with the results 
provided by literature, mostly with the results given by [1]. When the same results is compared with 

the ones found by [6], a slight discrepancy occurs among the initial phase angles   . Such variable is 

very sensitive to the algorithm precision, so its value can change with the algorithm tolerance.  
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The return trip optimization problem based on the patched-conic approximation is basically the 

same as the outgoing mission. Furthermore, the image trajectory theorem is easily verified with the 

round trip trajectory in a rotating reference frame with origin coincident with the center of Earth, as 

shown in figures 2-5.  
All the trajectories obtained in this paper are direct ascent maneuvers and feasible, i.e., there is no 

collision with the Moon. Figure 1 shows there is only one minimum in the total velocity increment 

curve. However, others sets of minimum can be found if the time of flight is considerably increased 
and more revolutions are performed by the vehicle around the Earth. Topputo [9] develops a 

systematic analysis of these minimum in a four-body model. 

 

 

Table 2. Altitude LEO: 463 km. Altitude LMO: 100 km. Couterclockwise arrival. Outgoing trip. 

Altitude 

LMO 

[km] 

Model 
        
[km/s] 

      
[km/s] 

      
[km/s] 

Time of 

flight     

[days] 

            
[degrees] 

Feasibility 

100 

Patched-conic 
[4] 

3.8482 3.0655 0.7827 4.794 -115.723 Yes 

Patched-conic 3.8482 3.0655 0.7827 4.797 -115.691 Yes 

PCR3BP 

simplified [4] 
3.8758 3.0649 0.8109 4.564 -116.800 Yes 

PCR3BP classic 
 [4] 

3.8777 3.0658 0.8119 4.573 -116.410 Yes 

Miele 3.8760 3.0650 0.8110 4.370 -118.980 — 

 

 

 
    

 

 
 

 

  

 

 

 

Figure 2. Round trip in the rotating reference 

frame. LEO = 463 km, LMO = 100 km. 

Counterclockwise. 

 Figure 3. Zoom at LMO. Counterclockwise 

case. 

   

   

Note that the flight of time obtained for the optimal trajectories is larger than that of Apollo 

missions (about 3 days), however, these last trajectories are not an optimal solution with minimum 
fuel consumption [6]. 
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Figure 4. Round trip in the rotating reference 

frame. LEO = 463 km, LMO = 100 km. 

Clockwise. 

 Figure 5. Zoom at LMO. Clockwise case. 

 

5.  Conclusion 

In this paper, a full lunar patched-conic approximation is presented. The round trip journey of the 
space vehicle is obtained through optimal impulsive trajectories based on these patched-conic 

approximations. The Sequential Gradient Restoration Algorithm is utilized in the optimization 

problem, which is conducted separately for the outgoing and the return trip. The results demonstrate to 

be consistent with those provided by the three body problem and found in the literature. The image 
trajectories theorem is proven due to the symmetry between the outgoing trajectory path with the 

return trajectory path in the rotating reference frame. Therefore, the patched-conic approximations can 

be applied for preliminary mission analysis as well as used as initial guess for more complex models. 

6.  Acknowledgment 

The research was supported by Fapesp under contracts 2012/25308-5 and 2012/21023-6 and CNPq 

under contract 304913/2013-8. 

7.  References 

[1] Da Silva Fernandes S and Marinho C M P 2012 Optimal two-impulse trajectories with moderate 

flight time for earth-moon missions Mathematical Problems in Engineering vol 2012. 34 

pages. Article ID 971983. DOI: 10.1155/2012/971983. 
[2] Da Silva Fernandes S and Marinho C M P.  2013 Sun perturbations on optimal trajectories for 

earth-moon flight. Proc. Int. Congress of Mechanical Engineering COBEM 2013 (Ribeirão 

Preto). vol 2013 (Ribeirão Preto: Brazil/ABCM). ISSN 2176-5480. 
[3] Koon W S, et al. 2001 Low energy transfer to the Moon. In Dynamics of Natural and Artificial 

Celestial Bodies vol 2001 (Springer Netherlands). pp 63-73. DOI: 10.1007/978-94-017-1327-

6_8. 

[4] Marec J-P 1979 Optimal space trajectories vol 1 (New York: Elsevier) 
[5] Miele A, Huang H Y, and Heideman J C 1969 Sequential gradient-restoration algorithm for the 

minimization of constrained functions: ordinary and conjugate gradient versions Journal of 

Optimization Theory and Applications vol 4 n 4 (Kluwer Academic Publishers-Plenum 
Publishers) pp 213-243. DOI: 10.1007/BF00927947 

[6] Miele A and Mancuso S 2001 Optimal trajectories for Earth–Moon–Earth flight Acta 

Astronautica vol 49 n 2 (ELSEVIER) pp 59-71. DOI: 10.1016/S0094-5765(01)00007-8 

XVII Colóquio Brasileiro de Dinâmica Orbital – CBDO IOP Publishing
Journal of Physics: Conference Series 641 (2015) 012001 doi:10.1088/1742-6596/641/1/012001

6



 

 
 

 

 

 

[7] Prado A F B A and Rios-Neto A T A I R 1993 Um estudo bibliográfico sobre o problema de 

transferências de órbitas Revista Brasileira de Ciências Mecânicas vol 15 n 1 pp 65-78 

[8] Szebehely V G and Mark H 1998 Adventures in celestial mechanics 2 ed (John Wiley & Sons) 

[9] Topputo F 2013 On optimal two-impulse Earth–Moon transfers in a four-body model Celestial 
Mechanics and Dynamical Astronomy vol 117 n 3 (Springer Netherlands)  pp 279-313. DOI: 

10.1007/s10569-013-9513-8 

[10] Topputo F and Belbruno E 2013 Optimization of Low-Energy Transfers. In Modeling and 
Optimization in Space Engineering 2013 vol 73 (New York:Springer) pp 389-404. DOI: 

10.1007/978-1-4614-4469-5_16  

XVII Colóquio Brasileiro de Dinâmica Orbital – CBDO IOP Publishing
Journal of Physics: Conference Series 641 (2015) 012001 doi:10.1088/1742-6596/641/1/012001

7


