
Relation of Parallel Discrete Event Simulation

algorithms with physical models

L.N. Shchur1,2 and L.V. Shchur1

1Science Center in Chernogolovka, 142432 Chernogolovka, Russia
2National Research University Higher School of Economics, 101000 Moscow, Russia

E-mail: shchur@chg.ru

Abstract. We extend concept of local simulation times in parallel discrete event simulation
(PDES) in order to take into account architecture of the current hardware and software in
high-performance computing. We shortly review previous research on the mapping of PDES on
physical problems, and emphasise how physical results may help to predict parallel algorithms
behaviour.

1. Introduction
During the last decades high-performance computing evolved from big mainframes with a
complicated central processing unit (CPU) into parallel processing of large numbers of CPUs
and GPGPUs (general-purpose graphics processing units). Orchestrating thousands of them in
a single task is one of the challenging problems of high-performance computing (HPC). We will
focus our discussion on parallel discrete event simulations (PDES). PDES is the execution of a
single discrete event simulation program on a parallel computer or on a cluster of computers [1].
It is widely used and is more and more applied in physics and computer science, as well as
in economics and engineering. The system that should be simulated is divided into disjoint
subsystems, which, nevertheless, are not isolated during the simulations, and dependencies
between them should be resolved properly. There are three main essentials of PDES. Firstly, it
is assumed that changes of possible, or potential, dependencies occur not at arbitrary, but at
some particular moments of time. It is supposed that these changes’ moments of time are spread
on a scale which is large enough if compared to an elementary unit of time. Therefore, changes
are considered as discrete (although random) in time, and are called discrete events.Subsystems
evolve independently in time, as soon as there are no dependencies generated. We need to have
some protocol in order to process dependencies correctly, in other words we would like to keep
causality.This is done with the concept of local virtual time [2] associated with each subsystem,
and which is the second essential feature of PDES. As soon as a new time event occurs in
subsystem, the message containing necessary information is generated and stamped with the
local simulation time. This message is sent to all other subsystems. This is the third essential
feature of PDES - there is no information exchange through common variables and no access to
shared memory. Instead all the information is spread via messages. The ensemble of messages
generates a profile of local simulation times. The evolution of the profile in time depends on
the particular scheme of managing causality, and the analysis of profile properties is the main
subject of the present paper.

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012065 doi:10.1088/1742-6596/640/1/012065

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2. Extension of PDES concept and classification of PDES schemes
Originally [1], subsystems were associated with particular processing elements (PEs), which were
assumed to be just one CPU. In paper [3] the concept was generalised taking into account that
CPU may run a number of threads, and subsystems may be run in several parallel tasks. We
generalise this problem further and analyse the current state of the typical HPC hardware and
software.

The number of hybrid HPC systems built up with CPU and GPGPU, grows in Top500 list 1

during last years. Typically, each CPU can have several processing elements (cores) which can
run concurrently two threads. We keep in mind the following mapping of a physical problem
on a computing algorithm. Firstly, we associate each subsystem with a subtask. Secondly, we
associate a processing element (PE) with each subtask. Thirdly, we assign local simulation time
(LST) to each PE, τi(t), i = 1, 2, ...N , where t is the simulation time, and N is the total number
of PEs. In the modern HPC system, we can think of PE as a core running by CPU or a kernel
running by GPGPU. We do not discuss here optimisation and efficiency of simulations which
depend strongly on a given and particular hardware architecture. We take into account only
common and universal properties of parallel simulations on advanced hybrid HPC systems.

PEs within the PDES task can communicate conservatively or optimistically [1]. Under
optimistic scheme all PEs run while assuming that all the causalities are fulfilled. Simulation
is going on, and PEi sends a message with the time stamp Ti = τi(t), i.e. at which event
occurs. Suppose that at some moment of simulation it turns out that Ti is smaller than the
current local simulation time τj of the processing element PEj , that is τj > Ti, and that PEj
depends on the corresponding event with the time stamp Ti. Therefore, causality gets broken,
and the optimistic scheme provides a rollback mechanism to overcome this problem by sending
anti-messages to recover causality [2]. It is clear that the recovery process typically is not local
and can produce multiple anti-message processes, which can lead to an avalanche in LSTs. The
time horizon will evolve back in time until no more anti-messages are generated. After that,
simulations will resume and the system will proceed forward in time.

In conservative scheme, alternatively, PEs do not run until they receive all the information
from dependant PEs, and causality is never broken.

Let us start our analysis with a simplified case in which our system is one-dimensional and
each subsystem is dependent on local (left and right) subsystems. Let us map our system on the
simple HPC architecture with N nodes, each of these nodes has M CPUs, and each CPU has c
cores. This gives us hierarchy of memory access times. The fastest communication is between
cores within CPU which have access to the on-chip memory. The next level of communication
speed is within a node, its CPUs share the same node memory, onboard memory. The slowest
level of the communication speed is the communication between nodes which interact usually
over Infiniband hardware. Let us divide the task on c ∗M ∗ N subsystems, from which c ∗M
subsystems will run on one node.

Figure 1 presents the simplified model of hardware. Processing elements 1,2,3, and 4 are
mapped on cores 1,2,3, and 4 of CPU1. Processing elements 5,6,7, and 8 are mapped on cores
1,2,3, and 4 of CPU2, etc. Solid arrows correspond to the communication within CPU, and they
can be efficiently realised with the conservative scheme.

PEs within nodes (shown in Figure 1 with dashed arrows) can communicate conservatively,
and we suppose that this communication is much faster than the communication between nodes
(shown in Figure 1 with dotted arrows), which is usually the case2. Sometimes it can happen

1 The list which ranks HPCs is updated twice a year [4] and is announced at International Conferences on
Supercomputing which are held in May and November.
2 In this case we have a mechanism which allows to run a particular group of threads within one CPU. It
is reasonable for them to communicate without sending messages, and rather use a mechanism for thread
synchronisation, as shown in Figure 1 with solid arrows.

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012065 doi:10.1088/1742-6596/640/1/012065

2

 Processing elements

1 2 3 4 5 6 7 8 9

 CPU1

1

2

3

4

 CPU2

 CPU3

1 3

2 4

1 3

2 4

 On Board Memory

 Node 1

 On Board Memory

 Node 2

Figure 1. Mapping of processing elements on the cores, CPUs, and nodes.

that the average simulation time between events is much longer than sending messages via
communication channels and analysing them. In this case the communication between nodes
can be realised by any scheme, conservative or optimistic.

In fact, there are third possibility introduced in paper [3], where the mapping of PDES
conservative scheme on the physical problem of surface growth in molecular beam epitaxy [5]
is used for the following classification. The surface growth may be described with a nonlinear
differential equation, known as KPZ equation [6] (see for details in the next section). Boundary
conditions of KPZ equation can be associated with the PDES schemes such that free boundary
conditions can be associated with the optimistic algorithm, and periodic boundary conditions
with the conservative algorithm, and fixed boundary conditions leads to the FaS algorithm
proposal [3]. Schematically, it can be explained by Figure 1. In FaS algorithm there is no
communication between PEs 8 and 9 (i.e., between those PEs which are on the boundary
between two nodes) for some time interval TF , and PEs communicate conservatively within
each node, leading to the propagation of freezing from the boundary PEs to the intermediate
PEs (which is PE4 and PE5 in Figure 1). After that, Shift process initiated in a way that PEs
are cyclically shifted to the right between CPUs and nodes such that PEs 1, 2, 3 and 4 are
mapped on the cores 1, 2, 3 and 4 of CPU2, PEs 5, 6, 7 and 8 will be mapped on the cores 1,
2, 3 and 4 of CPU3, and so on. Then Freeze step of FaS algorithm starts again. It is argued
in [3] that such algorithm may be efficient for hardware architectures where memory exchange
and computations can be done in parallel.

Generalisation of our extension for the hybrid architecture of supercomputers, built up with
either GPGPU with CUDA or OpenCL, or Intel φ architecture, is straightforward.

3. Conservative algorithm are deadlock-free
Let us describe in more details the mapping of conservative algorithm on the problem of
molecular epitaxy surface growth [5].

Let us associate the value of a local simulated time τi(t) with PE number i, which is the

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012065 doi:10.1088/1742-6596/640/1/012065

3

function of global time t. For t ≥ 1 the LST evolves iteratively as

τi(t+ 1) = τi(t) + ηi(t) if τi(t) ≤ min {τi−1(t), τi+1(t)} ;

τi(t+ 1) = τi(t) else , (1)

where ηi are random exponential variables. Each time the PE number i advances in time it
sends messages to the right (i+ 1) and left (i− 1) PEs with the time stamp of its LST τi(t).

The iterative process (1) can be rewritten as

τi(t+ 1) = τi(t) + Θ (τi−1(t)− τi(t))
×Θ (τi+1(t)− τi(t)) ηi(t) (2)

using the Heaviside step function Θ.

It was argued by Korniss et al [5] that the coarse-grained time-horizon τ̂ ,
(
φ̂ = ∂t̂/∂x

)
obeys

the Kardar-Parisi-Zhang (KPZ) equation

∂τ̂

∂t̂
=
∂2τ̂

∂x2
− λ

(
∂τ̂

∂x

)2

, (3)

which should be extended with the noise to capture the fluctuations.
Introducing the local slopes φi = τi − τi−1, the density of local minima can be written as

u(t) =
1

L

L∑
i=1

Θ (−φi(t)) Θ (−φi+1(t)) (4)

and its average
〈u(t)〉 = 〈Θ (−φi(t)) Θ (φi+1(t))〉 (5)

is the mean velocity of the time horizon, equal to 0.246410(7). Hence, the efficiency of the
algorithm (in this worst-case scenario) is about 25 per cent. The algorithm is free of deadlock,
since at least the PE with the absolute minimum LST can proceed.

It is argued in [7] that the width of the LST profile growth as
√
N with the number N of

processing elements, thus the synchronisation in conservative algorithm becomes a problem.

4. Optimistic algorithm and directed percolation problem
The model of time evolution of LST profile in optimistic algorithm can be described as simulation
process consisting of two steps [8]. The first step is the optimistic unrestricted growth at which
a system evolves forward in time and the second is the backward algorithm of sending anti-
messages. For this purpose one may introduce two parameters, J and K associated with two
steps of optimistic scheme. Namely, at the first step one evaluates the time horizon by updating
all the randomly chosen LST τi(t+1) with J following Poisson distribution, and every PE can be
chosen with the non-zero probability. Then we have to relax K times the LST of all PEi to LST
of the nearest left (right) PEi−1 (PEi+1), with K following Poisson distribution. It was found
in [8] that the average of time profile u(t) evolves proportionally to (q−qc)ν , with q = J/(J+K),
with a value of ν = 1.74 close to the critical exponent of directed percolation [9]. The value
of qc ≈ 0.23 corresponds to the relation between the parameters of the model K ≈ 2.39J . It
should be mentioned that the width of the LST profile acts better for values of q faraway from
the critical value qc. When close to qc the system practically does not evolve in time. The growth
of width provides an analogy with the roughening transition, which is in the same universality
class as a directed percolation [9].

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012065 doi:10.1088/1742-6596/640/1/012065

4

5. Nonlocal message exchange and stabilisation of the width growth
What happens to the evolution of LSTs profile in the case of long-range interactions? This
question was answered in relation to the conservative algorithm in paper [10] through the
introduction of random interactions of PEs throughout the whole system. This construction
corresponds to the famous small-world network problem [11]. It was shown in [10] that an
addition of only 10 per cents of random and non-local interactions between processing elements
i and j, chosen randomly from {1, 2, . . . , N −1, N} processing elements, does stabilise the width
of the LSTs profile. This scheme keeps property of finite evolution speed, typical for conservative
scheme, and therefore, it is dead-lock free.

6. Discussion
In this paper we extend the concept of processing elements and local simulation times in order
to take into account the current state of high performance hardware and software computing
systems. We review the results of the association of PDES evolution with the physical processes,
and emphasise that the results received from physical problems may be useful for the analysis
of some classes of parallel algorithms. It seems that PDES algorithms may be extended to the
simulation of systems with non-local interactions, and this investigation is in progress.

7. Acknowledgments
This work was supported by the grant of the Russian Science Foundation 14-21-00158.

References
[1] Fujimoto R M 1990 Commun. ACM. 33 31
[2] Jefferson D R 1985 Assoc. Comput. Mach. Trans. Programming Languages and Systems 7 404
[3] Shchur LN and Novotny M A 2004 Phys. Rev. E 70 026703
[4] Top500 List http:\\top500.org

[5] Korniss G, Toroczkai Z , Novotny M A, and P.A. Rikvold P A 2000 Phys. Rev. Lett. 84 1351
[6] Kardar M, Parisi G, and Zhang Y C 1986 Phys. Rev. Lett 56 889
[7] Guclu H , Korniss G, Novotny M A, Toroczkai Z, and Rácz Z 2006 Phys. Rev. E 73 066115
[8] Shchur L N and M. A. Novotny M A unpublished.
[9] Alon U, Evans M R, Hinrinchsen H, and Mukamel D 1996 Phys. Rev. Lett. 76 2746
[10] Korniss G, Novotny M A, Guclu H, Toroczkai Z, Rikvold P A 2003 Science 299 677
[11] Watts D J and Strogatz S H 1998 Nature 393 440

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012065 doi:10.1088/1742-6596/640/1/012065

5

