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Abstract. The paper describes the software infrastructure of the PARINT package for multivariate
numerical integration, layered over a hybrid parallel environment with distributed memory computations
(on MPI). The parallel problem distribution is typically performed on the region level in the adaptive
partitioning procedure. Our objective has been to provide the end-user with state of the art problem solving
power packaged as portable software. We will give test results of the multivariate PARINT engine, with
significant speedups for a set of 3-loop Feynman integrals. An extrapolation with respect to the dimensional
regularization parameter (ε) is applied to sequences of multivariate PARINT results Q(ε) to obtain the
leading asymptotic expansion coefficients as ε → 0. This paper further introduces a novel method for a
parallel computation of the Q(ε) sequence as the components of the integral of a vector function.

1. Introduction
The PARINT parallel integration package supports the computation of multivariate integrals over hyper-
rectangular and simplex regions. The algorithms and tools in the parallel integration engine include:
(i) an adaptive region subdivision algorithm, equipped with a load balancing strategy to handle localized
integrand difficulties such as peaks and singularities;
(ii) a non-adaptive Quasi-Monte Carlo (QMC) method based on Korobov lattice rules;
(iii) Monte Carlo (MC) methods for high dimensions and/or erratic integrands;
(iv) a user interface based on the PARINT plugin compiler which pre-processes the user problem
specification and integrand function to be linked with the ParInt executable;
(v) 1D rules corresponding to those in QUADPACK [1], which can be used for repeated integration in
successive coordinate directions.
Repeated integration with QUADPACK programs has been proven extremely effective for applications
to Feynman loop integrals with severe singularities in high-energy physics [2]. However, repeated or
iterated integration has an impeding drawback with respect to the expense of the method for higher-
dimensional problems (say, dimensions ≥ 6). In a sequential setting, multivariate adaptive integration
is considered suitable for moderate dimensionality (say, up to 10) while possibly dealing with mildly
irregular integrand behavior, and for higher dimensions with well-behaved functions. These limits can
be moved up considerably in a parallel environment by allowing finer subdivisions with higher numbers
of integrand evaluations.

Written in C and layered over MPI [3], the PARINT methods are implemented as tools for automatic
integration, where the user defines the integrand function and the domain, and specifies a relative and
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absolute error tolerance for the computation (tr and ta, respectively). The integrand is defined as a vector
function over the domain D. Denoting the (exact) integral by

I ~f =

∫
D
~f(~x) d~x, (1)

it is then the objective to return an approximation Q~f and absolute error estimate Ea
~f such that

|| Q~f − I ~f || ≤ || Ea
~f || ≤ max{ ta, tr|| I ~f || }, or indicate with an error flag that the requested

accuracy cannot be achieved. When a relative accuracy (only) needs to be satisfied we set ta = 0 (and
vice-versa). If both ta 6= 0 and tr 6= 0, the weaker of the two error tolerances is imposed; if both
ta = tr = 0 then the program will reach an abnormal termination, typically when the maximum number
of function evaluations is reached. Optionally the PARINT installation can be configured to use long
doubles instead of doubles.

This paper focuses on the distributed adaptive algorithm in the PARINT multivariate integration
package combined with extrapolation techniques as addressed in Section 2, and presents test results
for Feynman loop integrals in Section 3.

2. Adaptive integration and extrapolation
2.1. PARINT parallel adaptive integration
Layered over MPI [3] for distributed computing, the PARINT adaptive code assigns the roles of controller
and worker processes for adaptive region partitioning (see also [4] and [5] for an explanation of the
algorithm). The integration domain is divided initially among the workers. Each on its own part
of the domain, the workers engage in an adaptive partitioning strategy similar to that of DQAGE in
QUADPACK [1], DCUHRE [6] and HALF [7] by successive bisections, thus generating a local priority
queue of subregions as a task pool. The priority queue is implemented as a max-heap keyed with the
estimated integration error over the subregions, so that the subregion with the largest estimated error is
stored in the root of the heap, or as a deap or double-ended heap, to allow for efficient deletions of the
minimum as well as the maximum element in case the user specifies a maximum size to be retained for
the heap structure.

An important mechanism of the distributed integration algorithm is the load balancing strategy, which
is receiver-initiated and geared to keeping the loads on the worker task pools balanced, particularly for
problems with irregular integrand behavior. The message passing is performed in a non-blocking and
asynchronous manner, and permits overlapping of computation and communication. As a result of the
asynchronous processing and message passing on MPI, PARINT executes on a hybrid platform (multi-
core and distributed) by assigning multiple processes to each node. The parallelization may, however,
lead to breaking loss or extra work performed at the end of the computation, due to the time elapsed
while workers continue to generate subregions after the termination message has been issued but before
receiving it. This may increase the total amount of work (compared to the sequential work), particularly
when the number of processes is large.

2.2. Use of PARINT
PARINT can be invoked from the command line, or by calling the pi_integrate() function in
a program for computing an integral of the form (1). A user guide is provided in [8]. The call
sequence passes a pointer to the integrand function, typed as a pointer to a function that returns an
integer, and where the parameters of the integrand function correspond to the integral dimension,
argument vector ~x, number of component functions nfuncs and the resulting values of the function
~f(x). Further parameters of pi_integrate() are (on input): nfuncs, an integer identifying the
cubature/quarature rule to use, the maximum number of function evaluations allowed, the region type
(hyper-rectangle or simplex) and specification; and (on output): the integral and error approximations
result[] and error[], and a user-declared pointer to a status structure.
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When PARINT is used as a stand-alone executable, it uses the PARINT Plug-in Library (PPL)
mechanism to specify integrand functions. The functions are written by the user, added to the library
(along with related attributes), and then compiled using a PARINT-supplied compiler into plug-in
modules (.ppl files). A single PPL file is loaded at runtime by the PARINT executable. Using a function
library enables quick access to a predefined set of functions and lets PARINT users add and remove
integrand functions dynamically without re-compiling the PARINT binary. Once these functions are
stored in the library, they can be selected by name for integration.

For an execution on MPI, the MPI host file (myhostfile) contains lines of the form:
node_name slots=ppn where ppn is the number of processes to be used on each participating
node. A typical MPI run from the command line may be of the form
mpirun -np 64 --hostfile myhostfile ./parint -f fcn -lf 10000000 -ea 0.0 -er 5.0e-10

For example, with 4 nodes listed in myhostfile and ppn = 16, a total of 64 processes is requested.
The integrand function of this run is named fcn in the user’s library; the maximum number of function
evaluations is 10000000, and the absolute and relative error tolerances are 0 and 5.0e-10, respectively.

2.3. Use of extrapolation
We apply numerical extrapolation to integrals with an asymptotic expansion in the dimensional
regularization parameter ε, of the form

S(ε) ∼
∑
k≥K

Ckϕk(ε) as ε→ 0. (2)

For example, the ϕk(ε) functions may be integer powers of ε, ϕk(ε) = εk,K ≥ k, with K = 0 for finite
integrals. If the ϕk(ε) functions are known, we can apply a linear extrapolation by approximating S(ε)
for decreasing values of ε = ε`, and truncating Eq (2) after 2, 3, . . . , ν terms to form linear systems of
increasing size to be solved for the Ck variables.

When the ϕk(ε) functions are unknown we perform a non-linear numerical extrapolation with the ε-
algorithm [9, 10, 11, 12]. In that case we generate a sequence of integral approximations for S(ε`), using
a geometric progression of ε` that tends to zero with increasing ` (see also [13, 2]), and employ a version
of the ε-algorithm code (DQEXT) from QUADPACK. In between calls, the DQEXT implementation
retains the last two lower diagonals of the triangular extrapolation table. When a new element of the
input sequence is provided, the algorithm calculates a new lower diagonal, together with an estimate or
measure of the distance of each newly computed element from preceding neighboring elements. With

the location of the “new” element in the table relative to e0, e1, e2, e3 pictured as:
e0

e3 e1 new
e2

we

assign new = e1 + 1/(1/(e1 − e3) + 1/(e2 − e1) − 1/(e1 − e0)), and set the distance measure for the
new element as |e2 − e1| + |e1 − e0| + |e2 − new|. The new lower diagonal element with the smallest
value of the distance measure is returned as the result for this call to the extrapolation code.

3. Results for Feynman loop integrals
One prominent application of multivariate integration is to the computation of Feynman loop integrals,
which contribute higher order corrections for accurate theoretical predictions of the cross-section for
particle interactions. The integral corresponding to an n-dimensional scalar Feynman diagram with L
loops and N internal lines can be represented in Feynman parameter space as

I =
Γ
(
N − nL

2

)
(4π)nL/2

(−1)N
∫ 1

0

N∏
j=1

dxj δ(1−
∑

xi)
CN−n(L+1)/2

(D − i%C)N−nL/2
. (3)

Here the functions C and D are polynomials determined by the topology of the corresponding
Feynman diagram [14]. After removing the δ-function in (3) and eliminating one of the
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Figure 1. 3-loop diagrams (a) N = 7 (Laporta[15] Fig 2(q)), (b) N = 7 (Laporta[15] Fig 2(r)), (c) N = 7 (Laporta[15] Fig
2(s)), (d) N = 8 (Laporta[15] Fig 2(t)), (e) N = 8 (Laporta[15] Fig 2(u), (f) N = 8 (Laporta[15] Fig 2(v))

variables in view of
∑N

j=1 xj = 1, the integration domain is a d-dimensional simplex Sd =

{ (x1, x2, . . . , xd) ∈ Rd |
∑d

j=1 xj ≤ 1 and xj ≥ 0 }, with d = N − 1. The term i%C prevents
the integral in (3) from diverging if D vanishes in the interior of the domain. As this does not happen
for the problems under consideration in this paper we can set % = 0. We set n = 4 − 2ε to compute
the leading order coefficients in an asymptotic expansion of the integral with respect to the dimensional
regularization parameter ε.

Test results are presented below for a set of 3-loop self-energy diagrams from Laporta [15] (given
in Fig 1). In order to compare our integral approximations with Laporta’s we set all masses mr = 1
and s = 1, and furthermore divide the integral by Γ3(1 + ε). For the numerical approximations
and timings we use the HPCC (High Performance Computation Center) cluster at WMU. The tests are
run on 16-core cluster nodes with Intel Xeon E5-2670, 2.6GHz processors and 128GB of memory, and
using the Infiniband interconnect for message passing via MPI. Tables 1-4 show various types of results
obtained by calling the pi_integrate() function and running the executable with 16 processes on
the HPCC cluster. The integrals are transformed from the (unit) simplex to the (unit) cube and the
integration is taken over the cube, using the basic integration rule of polynomial degree 9 [6]. Tables 1

Table 1. Integral and leading order expansion coefficients using PARINT with 16 procs., and linear extrapolation for 3-loop in-
tegral of Laporta Fig 2(r), err. tol. ta = 10−12; max. # evals = 20B, T (s) = elapsed time (s);Ea = integration estim. abs. error

INTEGRAL FIG 2(r) EXTRAPOLATION
ε` INTEGRAL Ea T(S) RESULT C0 RESULT C1 RESULT C2

2−3 0.89462319318517 6.33e-10 356.9
2−4 1.07605987265074 8.56e-10 426.3 1.257496552116 -2.9029868714
2−5 1.19524813881849 1.15e-09 426.2 1.333416355943 -4.7250621633 9.7177349
2−6 1.26445377191768 1.34e-09 426.2 1.341017173944 -5.1507079713 16.5280678
2−7 1.30188593759114 1.46e-09 426.2 1.341390110905 -5.1954604067 18.1988254
2−8 1.32137252564963 1.52e-09 426.2 1.341399132800 -5.1976978366 18.3778198
2−9 1.33131707386056 1.55e-09 426.2 1.341399240859 -5.1977522983 18.3868241
2−10 1.33634079003748 1.57e-09 426.2 1.341399241503 -5.1977529523 18.3870438
2−11 1.33886565298449 1.58e-09 426.2 1.341399241505 -5.1977529584 18.3870480

Eq (2), Laporta [15]: 1.341399241447 -5.1977529559 18.3870466
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Table 2. Integral and leading order expansion coefficients using PARINT with 16 procs., and extrapolation with ε-algorithm
for 3-loop integral of Laporta Fig 2(r), err. tol. ta = 10−12; max. # evals = 20B, T (s) = elapsed time (s); Ea = integration
estim. abs. error

INTEGRAL FIG 2(r) EXTRAPOLATION
ε` INTEGRAL Ea T(S) RESULT C0 RESULT C1 RESULT C2

2−3 0.89462319318517 6.33e-10 356.9
2−4 1.07605987265074 8.56e-10 426.3
2−5 1.19524813881849 1.15e-09 426.2 1.423460265674 -2.0676022044 -7.9521322
2−6 1.26445377191768 1.34e-09 426.2 1.360275447540 -3.2163693548 -23.710490
2−7 1.30188593759114 1.46e-09 426.2 1.339480501116 -6.2931480198 5.5420653
2−8 1.32137252564963 1.52e-09 426.2 1.341163816983 -5.4086365404 9.8856275
2−9 1.33131707386056 1.55e-09 426.2 1.341410985041 -5.1746466051 25.0634683
2−10 1.33634079003748 1.57e-09 426.2 1.341399965444 -5.1950222482 19.5001958
2−11 1.33886565298449 1.58e-09 426.2 1.341399223875 -5.5197895049 18.6327973
2−12 1.34013135392416 1.58e-09 426.2 1.341399240952 -5.1977615908 18.3726055
2−13 1.34076502405465 1.59e-09 426.2 1.341399241506 -5.1977527356 18.3878520

Eq (2), Laporta [15]: 1.341399241447 -5.1977529559 18.3870466

Table 3. Integral and leading order expansion coefficients using PARINT with 16 procs., and linear extrapolation for 3-loop in-
tegral of Laporta Fig 2(u), err. tol. ta = 10−12; max. # evals = 20B, T (s) = elapsed time (s);Ea = integration estim. abs. error

INTEGRAL FIG 2(u) EXTRAPOLATION
ε` INTEGRAL Ea T(S) RESULT C0 RESULT C1 RESULT C2

2−3 0.176698722960541 1.01e-09 363.8
2−4 0.179083545661235 9.17e-10 437.2 0.181468368362 -0.0381571632
2−5 0.180693790881676 9.24e-10 437.3 0.182582592016 -0.0648985309 0.14262063
2−6 0.181617679292608 9.34E-10 437.2 0.182626195317 -0.0673403158 0.18168919
2−7 0.182111420125171 9.79e-10 437.7 0.182627225039 -0.0674638824 0.18630234
2−8 0.18236652627441 9.84e-10 437.6 0.182627237225 -0.0674669046 0.18654412
2−9 0.182496175680214 9.86e-10 437.7 0.182627237219 -0.0674669014 0.18654358
2−10 0.182561529243301 9.86e-10 437.8 0.182627237221 -0.0674669038 0.18654439

Eq (2), Laporta [15]: 0.182627237539 -0.0674669097 0.18654624

Table 4. Integral and leading order expansion coefficients using one call to PARINT with vector function, 16 procs. and
linear extrapolation for 3-loop integral of Laporta Fig 2(u), err. tol. ta = 10−12; max. # evals = 20B, T (s) = elapsed time (s);
Ea = integration estim. abs. error

INTEGRAL FIG 2(u) EXTRAPOLATION
ε` INTEGRAL Ea RESULT C0 RESULT C1 RESULT C2

2−3 0.176698722966533 1.57e-09
2−4 0.179083545593469 1.63e-09 0.181468368220 -0.0381571620
2−5 0.1806937908054 1.71e-09 0.182582591950 -0.0648985315 0.1426206455
2−6 0.181617679222644 1.76e-09 0.182626195261 -0.0673403170 0.1816892047
2−7 0.182111420130547 1.80e-09 0.182627225208 -0.0674639106 0.1863033669
2−8 0.182366526276538 1.81e-09 0.182627237153 -0.0674668729 0.1865403500
2−9 0.182496175679009 1.82e-09 0.182627237223 -0.0674669081 0.1865461701
2−10 0.182561529242407 1.83e-09 0.182627237223 -0.0674669083 0.1865462415

Eq (2), Laporta [15]: 0.182627237539 -0.0674669097 0.1865462421

Table 5. Parallel performance of PARINT (on MPI) for 3-loop integrals (C0) of Fig 1, abs. tolerance ta = 5 × 10−10, and
max. number of evaluations = 10B

3-loop N Result Result Result T1[s] T64[s] S64

diag. Laporta [15] p = 1 p = 64

Fig 1 (a) 7 1.32644820827 1.326448206 1.32644819 902.7 15.8 57.1
Fig 1 (b) 7 1.34139924145 1.34139924147 1.3413992416 1026.2 14.4 71.3
Fig 1 (c) 7 2.00250004111 2.00250004113 2.0025000412 879.3 13.4 65.6
Fig 1 (d) 8 0.27960892328 0.2796089227 0.279608920 1019.7 15.9 64.1
Fig 1 (e) 8 0.18262723754 0.1826272372 0.1826272368 1018.3 15.8 64.4
Fig 1 (f) 8 0.14801330396 0.1480133036 0.1480133026 976.6 16.4 59.5
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and 3 are computed with consecutive calls to pi_integrate() in a loop and linear extrapolation,
for the functions of (Laporta) Fig 2(r) with N = 7, and Fig 2(u) with N = 8, respectively (depicted in
Fig 1). The values of C0, C1 and C2 are listed (K = 0 in Eq (2)). The abbreviation “B” refers to billion
with regard to the number of integrand evaluations, and T (s) represents the integration time in seconds.
Table 2 is obtained similarly for Fig 2(r), but with non-linear extrapolation by the ε-algorithm.

The results in Table 4 for Fig 2(u) are computed with one call to pi_integrate() from the
main program, integrating a vector function that contains the ε-dependence in the definition of its
components. The integration time for the vector function (at 2180 seconds) is considerably less than
the total integration time through the loop in Table 3, with comparable or slightly better accuracy for the
same problem. If less accuracy is needed overall, the computation will take less time with both methods.
The extrapolations in Tables 1-4 show good agreement with the values of the Eq (2) coefficients from
Laporta [15]. Table 5 presents timing results on the HPCC cluster, corresponding to the six diagrams
in Fig 1. Since the integrals with kinematics specified by Laporta [15] are finite and only the integral
needs to be computed, we set ε = 0 in the integrand codes. The speedup Sp = T1/Tp (where Tp is the
integration time incurred with p processes) indicates good scalability of the parallel implementation (see
also [16]). For a total of p = 64 MPI processes on 4 cluster nodes, 16 procs are spawned per node.

4. Concluding remarks
In this paper we explored distributed, automatic integration with the PARINT multivariate integration
package, in particular its adaptive integration engine. We demonstrated its accuracy and parallel
scalability for the computation of the leading order coefficients in an asymptotic expansion with respect
to the dimensional regularization parameter ε, as ε → 0, for a class of 3-loop self-energy integrals
from [15]. This procedure relies on obtaining approximations of a sequence of integrals as ε→ 0, and an
extrapolation for convergence acceleration of the sequence. In view of the compute-intensive nature for
moderate integral dimensions, the parallelization has been proven beneficial for obtaining considerable
accuracy.
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