XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040

Unil0: an open-source library for tensor network
algorithms

Ying-Jer Kao'2, Yun-Da Hsieh!, Pochung Chen?®

! Department of Physics , National Taiwan University, Taipei, 10607, Taiwan
2 Center for Advanced Study in Theoretical Science, National Taiwan University, Taipei, 10607, Taiwan
3 Department of Physics, National Tsing Hua University, Hsin-Chu, 30013, Taiwan

E-mail: yjkao@phys.ntu.edu.tw

Abstract. We present an object-oriented open-source library for developing tensor network algorithms
written in C++ called Unil0. With UnilO, users can build a symmetric tensor from a collection of bonds,
while the bonds are constructed from a list of quantum numbers associated with different quantum states.
It is easy to label and permute the indices of the tensors and access a block associated with a particular
quantum number. Furthermore a network class is used to describe arbitrary tensor network structure and
to perform network contractions efficiently. We give an overview of the basic structure of the library and
the hierarchy of the classes. We present examples of the construction of a spin-1 Heisenberg Hamiltonian
and the implementation of the tensor renormalization group algorithm to illustrate the basic usage of the
library. The library described here is particularly well suited to explore and fast prototype novel tensor
network algorithms and to implement highly efficient codes for existing algorithms.

1. Introduction
Tensor network (TN) algorithms[1] have emerged in recent years as a promising tool to study the physics
of quantum many-body systems. The most well-known example is the density matrix renormalization
group (DMRG) algorithm for quasi-one-dimensional systems[2], which variationally optimizes the
matrix product state (MPS)[3]. DMRG has been successfully used to study frustrated quantum spin
systems[4], and topological ordered systems[5]. Borrowing the concepts of entanglement from the
quantum information science, proposals to extend MPS to higher dimensions have also been put forward.
Two-dimensional generalizations such as projective entangled-pair states (PEPS)[6, 7] and the multi-
scale entanglement renormalization ansatz (MERA) [8, 9], have been used to study many-body physics
in two dimensions. Recently, ideas from TNs have also been used to study systems other than the
condensed matter systems such as the holographic principles of AdS/CFT, and loop quantum gravity[1].
In short, TN algorithms have become an important tool to study non-perturbative aspects of many
strongly interacting systems. From a broader perspective, tensors are widely used in different branches
of sciences and engineering, such as pattern and image recognition, signal processing, machine learning
and computational neuroscience to represent very complicated multidimensional data with multiple
aspects [10]. It is then nature to use TNs to represent these multidimensional data and to use tensor
decomposition algorithms to find the low-dimension and low-rank tensors that best approximate the
complicated data.

To motive the need for a tensor network library, consider the contraction of a 2D tensor network.
Currently, there exist many different schemes, such as the corner transfer matrix method (CTM)[11,
12], the tensor renormalization group (TRG)[13], plaquette renormalization[14], high-order tensor

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing

Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040
(a) (b) (©) (d)
S Aa BaB Talagag...an
Q@ O Q@ « 5,

a2 o3

Figure 1: (Color online.) Tensor network diagrams: (a) scalar, (b) vector, (c) matrix and (d) rank-n tensor

reoeee TN,

Figure 2: (Color online.) Two examples of tensor network diagrams: (a) Matrix Product State (MPS) for
6 sites with open boundary conditions; (b) Projected Entangled Pair State (PEPS) for a 3 x 3 lattice with
open boundary conditions.

(a)

renormalization group (HOTRG)[15], and many others. All these algorithms involves contracting
tensors, i.e., summing over common indices between tensors. However, programming tensor network
algorithms is tedious and prone to errors. The task of keeping track of tensor indices while performing
contraction of a complicated tensor network can be daunting. It is hence desirable to have a platform that
provides the bookkeeping and optimization to speed up the software development .

In this paper, we describe a fully open-source implementation of a library designed for the
development of the tensor network algorithms called the Universal Tensor Network library or Unil0.
This software distinguishes itself from other available software solutions by providing the following
advantages:

e Fully implemented in C++.

e Aimed toward applications in tensor network algorithms.

e Provides basic tensor operations with an easy-to-use interface.

e Provides a class Network to process and store the graphical representations of the networks.
e Provides an engine to construct and analyze the contraction tree for a given network.

e Provides a collection of Python wrappers called pyUnil0 which interact with the compiled C++
library to take advantage of the Python language for better code readability and faster prototyping,
without the sacrifice of speed.

e Provides behind-the-scene optimization and acceleration.

The paper is organized as follows: Sec. 2 gives a brief introduction to the tensor networks and their
graphical representation; Sec. 3 summarizes the key components of the UnilO library and their usage;
Sec. 4 gives a sample code implementing the TRG method using pyUnil0; we conclude in Sec. 5.

2. Tensors, tensor networks, and tensor network diagrams

Tensors can be regarded as the multi-dimensional generalizations of matrices. For a given tensor T, the
rank is the number of indices. Therefore, a rank-0 tensor is a scalar (.5) , a rank-1 tensor is a vector (A4,),
and a rank-2 tensor is a matrix (B,g). The number of all possible values for an index is the dimension
of the index. We can perform index contraction for a set of tensors by summing over all of the possible

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040

@ (b)

Tensor Network Applications
DMRG, iTEBD, iPEPS, TRG, MERA, etc.
./E
/X “oo M
Low-Level Libraries 2 B Block \
BLAS, LAPACK, CUDA, cuBLAS, Magma l
Bond
Sg Qe Qnum
Hardware c
CPU, GPUMIC Qd___#

Figure 3: (a) UnilO serves as a middleware between the tensor network applications and the low-level
numerical libraries. (b) Hierarchy of the unilO classes.

Network UniTensor

values for the common indices. For example, a matrix multiplication can be regarded the contraction of
two rank-2 tensors

X
Top =Y AayBys, M
=1
where Y is the dimension of the index . A more complicated example is to contract four tensors to give
a complex number,

G= > AasBscCencs Dyca- (2)
aBvydénC

It is convenient to introduce a graphical representation of tensors and TNs using the tensor diagrams
(Fig. 1). Tensors are represented by a circle or a rectangle, and indices are represented by lines emerging
from these shapes. A TN is thus represented by a set of shapes interconnected by lines. The internal
lines connecting tensors correspond to contracted indices, and external lines correspond to open indices
in the TN. Figure 2 shows the graphical representation for MPS and PEPS respectively.

3. Unil0
3.1. Overview
The key object in UnilO is the Abelian symmetric tensor class UniTensor together with auxiliary
classes for quantum numbers Qnum, blocks B1ock, and bonds Bond. In addition, the library provides a
network class Network to store and process the details of the graphical representations of the networks.
Table 1 lists the major classes in Unil0, and Fig 3(b) shows the hierarchy of the different classes.

For a given network, UnilO provides an engine construct and analyze the pair-wise contraction tree.
A heuristic algorithm is implemented to search for an optimal pairwise contraction order based on the
computation and memory constraints of the system. The library also provides a collection of wrappers
for Python called pyUnil0 to take advantage of the for Python language that is designed for better code
readability, and faster prototyping.

In the following, we will use the pyUnil0 module to demonstrate some features of Unil0O. The
following import statement should be inserted at the beginning of all the Python codes,

from pyUnilO import x

3.2. Symmetric Tensors

In order to define a symmetric tensor, one must first construct an object that carries a quantum number.
In Unil0, a quantum number object is created through the Qnum class. To create a Qnum object named
g10 to represent a U(1) quantum number U; = 1 with even parity one can use the code:

gl0 = Qnum(l, PRT_EVEN)

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040

Table 1: Major UnilO classes

Class Description
UniTensor A symmetric tensor
Bond A bond with a list of quantum numbers {q1, g2, ...}
Qnum A composite U(1) x Zy x Z1" quantum number
Matrix A matrix
Block A map from a quantum number to a matrix
Network A network
While to create a quantum number object g_ 11 with U; = —1 with odd parity one can use the code:

g_1l1 = Qnum(-1, PRT_ODD)

Using the quantum number objects, one can proceed to define a bond which contains these quantum
numbers. In UnilO, two types of bonds are defined: the incoming and outgoing bonds. This can be
indicated using BD_IN and BD_OUT constants. To define an incoming bond of a three-fold degenerate
quantum number O the following code can be used:

Q=0num (0)

Qlist=[Q,Q,Q]
Bi=Bond (BD_IN, Qlist)

In cases where none of the symmetries is used, Unil0 provides a simple interface to create a non-
symmetric bond. To create a bond with dimension four the following code can be used:

Bo=Bond (BD_OUT, 4)
Where a default quantum number is assigned to all the quantum states. When no symmetries are used,
there is no need to distinguish between the incoming and outgoing bonds. However, the incoming bonds
are always used as the column indices for the internal storage of Unil0, and the specification is preserved

in the APIL.
A tensor is created using these bonds as shown in the code below:

A=UniTensor ([Bi,Bi,Bo,Bo])
In Unil0, each bond is associated with an integer label. A default set of labels will be assigned during

the tensor creation but the user can set the labels in any way that is convenient. In Unil0, the tensor
operations are overloaded, for example, the expression in Eq. (2) is represented in Unil0 as

G= AxBxCxD

Here bonds with the same label will be summed. A more efficient way to contract tensors is using the
Network class, which will be described in details in Sec. 3.4.

3.3. Example: Heisenberg Hamiltonian
Here we demonstrate how to construct a two-site Heisenberg Hamiltonian for S = 1,

H=8;-8S,. 3)

First we create incoming and outgoing bonds with dimension 3,

bdi unilO.Bond (unil0.BD_IN, 3)
bdo = unil0.Bond(unil0.BD_OUT, 3)

Next we create a tensor named H with two incoming and two outgoing bonds of dimension 3 that will be
used to store the Hamiltonian of the Heisenberg model,

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040

H = UniTensor ([bdi, bdi, bdo, bdo])

We can fill in the elements of H by putting in the elements directly,

heisenberg_sl=[\

1, 0, 0, 0, 0, 0, 0, 0, O0,\
0, 0, 0, 1, 0, 0, 0, 0, 0,\
0, 0,-1, 0, 1, 0, 0, 0, 0,\
0, 1, 0, 0, 0, 0, 0, 0, O0,\
0, 0, 1, 0, 0, 0, 1, 0, O,\
0, 0, 0, 0, 0, 0, 0, 1, 0,\
0, 0, 0, 0, 1, 0,-1, 0, O,\
0, 0, 0, 0, 0, 1, 0, 0, O,\
0, 0, 0, 0, 0, 0, 0, 0, 1\
]

H.setRawElem (heisenberg_sl)

Next, we show how to build the same Hamiltonian in the U(1) symmetric basis. This can be achieved
following the steps described above by specifying the quantum numbers on the bonds. First, create Qnum
objects holding U(1) quantum numbers 0, 1, and -1,

g0 = unil0.Qnum(0)

gl = unil0.Qnum(1l)
g_1l = unil0.Qnum(-1)

Then create incoming and outgoing bonds carrying these quantum numbers,

bdi = unil0.Bond(unilO.BD_IN, [gl, g0, g 11)
bdo = unil0.Bond (unil0.BD_OUT, I[gl, g0, g 11)

Finally, create a tensor H_U1 from the incoming and outgoing bonds, and fill in the elements,

H_Ul = unil0.UniTensor ([bdi, bdi, bdo, bdo], "H_U1")
H_Ul.setRawElem (heisenberg_sl)

The setRawE1lem method will fill in Hamiltonian tensor according to the local basis on the bonds, but
the tensor is stored in the symmetric basis, i.e., in terms of blocks. UnilO provides a compact way to
output the contents of the tensor with the print command,

print H_Ul

The output includes the type, the quantum numbers and their degeneracies of each bond, the blocks
corresponding to the total quantum numbers formed by the individual bonds, and the elements in each
block,

Ak khkkkkkxkkkkkxKx H_U]_ Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok

0__ 1|3 32
| |
113 3] 3
| |
| |
BONDS
IN : (UL =1, P =20, 0)|1, (UL =0, P=0, 0)|1, (UL =-1, P =0, 0)|1l, Dim = 3
IN : (UL =1, P =20, 0)|1, (UL =0, P=0, 0)|1, (UL =-1, P =0, 0)|1, Dim = 3
our: (Ul =1, p =20, 0)|1, (U1 =0, P =0, 0)|1, (UL =-1, P =0, 0)|1, Dim = 3
ouT: (U1 =1, P =0, 0)|1, (UL=0, P=20, 0)|1, (UL =-1, P =20, 0)|1, Dim = 3
BLOCKS
-——— (Ul =-2,P=0,0:1x1=1
1.000
——— (Ul =-1, P=0, 0): 2 x2 =24

0.000 1.000

XXVITUPAP Conference on Computational Physics (CCP2014)

IOP Publishing

Journal of Physics: Conference Series 640 (2015) 012040

1.000 0.000
--— (Ul =0, P=20, 0): 3 x
-1.000 1.000 0.000
1.000 0.000 1.000
0.000 1.000 -1.000
-—— (U1 =1, P=20, 0): 2 x
0.000 1.000
1.000 0.000
-—= (Ul =2, P=0, 0): 1 x
1.000

Total elemNum: 19

3

2

1

Axhkhhkhkkhkrkrxrrhkkkrrxx END *rhkkkdkrxrhkhkhkkkxx*

1

4

doi:10.1088/1742-6596/640/1/012040

The number of the blocks =

(U1 = -2, P=0, 0) 1 x1-=
1.000

(U1 = -1, P =0, 0) 2 x 2 =
0.000 1.000
1.000 0.000

(U1 =0, P=0, 0) 3 x 3=

-1.000 1.000 0.000
1.000 0.000 1.000
0.000 1.000 -1.000

(U1 =1, p =0, 0) 2 x 2 =
0.000 1.000
1.000 0.000

(U1 =2, P=0, 0) 1x1=
1.000

3.4. Network

TNs are collections of tensors and it is important to store the information about the connection between
tensors. An important feature of Unil0 is the Network class. Figure 5(a) shows a typical TN with three
tensors W, WT', and H. The labels indicates how these tensors are connected. Two tensors connected
through an internal line will share a common label. This TN can be represented by a text file with entries
showing the tensors and the labels for each tensors [Fig. 5(b)]. Unil0O provides a simple interface to
create a network named net by reading in the network file,

net =

Put tensors to net,

net.putTensor ("H", H_UIL)
net.putTensor ("W", W)
net.putTensor ("WT", WT)

unilO0.Network ("network.net")

Finally, perform contractions inside the tensor network,

T=net.launch ()

the resulting tensor T has an incoming bond labeled -1, and an outgoing bond labeled -2, as indicated in

the network.net.

(a)

(b)

H: 1 2; 3 4
wW: =1; 1 2

WT: 3 4; -2
TOUT: -1;
ORDER:

Figure 4: (Color online.)
(@) A network with three
tensors. (b) The network
file network.net represent-
ing the connection between the
tensors.

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040

(©)

© 13

Figure 5: (Color online.) (a) Pairwise contraction of three tensors. (b) Contraction algorithm. (c)
Pairwise contraction tree.

3.5. Network Contraction Algorithm
Finding the optimal pairwise contraction order of a general TN is NP-hard[16], and search algorithms are
available to find the optimal order in some special cases[17]. Here, we describe a network contraction
algorithm which aims to find a locally optimized pair-wise contractions order to contract the whole
tensor network. The algorithm has two major features: First, it is fast, and the time complexity is of
order O(log N) to O(N), depending on the balance of the contraction tree. Second, the algorithm
uses heuristics to optimize the contraction order and users can provide initial guess to improve the
optimization process.

We measure the efficiency of a pairwise contraction of two tensors A and B by defining the
contraction efficiency € in terms of the numbers of tensor elements N(A), N(B) and N(A * B),

€(A,B) = (N(A)+ N(B))/N(A* B). (4)

It is clear that €(A, B) = €(B, A). For a given pairwise contraction of A and B, we insert a third tensor
C by using a local optimization algorithm to determine the most efficient way for the three tensor to
contract. We compare €(A, B), e(B, C) and ¢(C, A) and contract first the pair with the largest efficiency,
followed by the contraction of the resulting tensor with the remaining tensor [Fig. 5(a)]. This procedure
is repeated until all the tensors are inserted into the network [Fig. 5(b)]. For a given tensor network, a
binary tree for the contraction order will be generated [Fig. 5(c)]. Since the algorithm can only find the
local optimal contraction order, the final contraction order may not be optimal. To overcome this, users
can propose a contraction order in the network file to serve as the initial guess for the search algorithm.

4. Sample Code: TRG
Here we present a code sample to demonstrate how to compute the magnetization along the z-axis (o)
using TRG for the transverse Ising model. In the following example, the tensors GaL and GbL of the
ground state wave function are obtained through some update scheme, such as iTEBD. The detailed
description of the TRG algorithm can be found in Ref. [13]. The goal of the algorithm is to compute the
expectation value of an operator O,

(0])

(0) =) (5

for a given TNS wave function in the two sublattice form,

A
) =>"Tr [Thanr sl a0, [sillsisg). (6)
8i,S;j i€A,JEB

XXVITUPAP Conference on Computational Physics (CCP2014)

IOP Publishing

Journal of Physics: Conference Series 640 (2015) 012040

doi:10.1088/1742-6596/640/1/012040

To compute the norm (denominator) and numerator of Eq. (5), we first define two functions makeT,
and makeImpurity to form double tensors and impurity tensors[13] from I'4 and T'5,

def makeT (GL) :
GLT = copy.copy (GL)
GLT.transpose ()
GL.setLabel ([0, 1, 2, 3, 41)
GLT.setLabel ([-1, -2, -3, -4, 0])
T = GLT » GL
for i in xrange(l, 5):

T.combineBond ([-1i, i])

return T

def makeImpurity (GL, Ob):
GLT = copy.copy (GL)
GLT.transpose ()
Ob.setLabel ([0, 5])
GL.setLabel ([5, 1, 2, 3, 41)
GLT.setLabel ([-1, -2, -3, -4, 01])
I = 0Ob % GL
I = GLT » I
for i in xrange(l, 5):

I.combineBond ([-i, i1)

return I

The function t rgSVD performs the singular value decomposition for the A and B sublattices, and

perform truncation,

def trgSVD (wch, T, chi):
if wch % 2 ==
T.permute ([-4, -3, -1, =21, 2)
else:
T.permute ([-1, -4, -2, =31, 2)

svd T.getBlock () .svd ()

chi = chi if chi < svd[l].row() else svd[l].row()

bdi_chi = unil0O.Bond(unil0.BD_IN, chi)
bdo_chi = unil0O.Bond(unilO.BD_OUT, chi)
SO0 = unil0.UniTensor ([T.bond(0), T.bond (1),

bdo_chil)

S1 = unil0.UniTensor ([bdi_chi, T.bond(2), T.bond(3)])

svd[1l].resize (chi, chi)
for i in xrange(chi):

svd[1l][i] = np.sgrt(svd[1l][i])
S0.putBlock (svd[0] .resize(svd[0].row (), chi)

return S0, S1

* svd[1l])
S1l.putBlock (svd[1l] * svd[2].resize(chi, svd[2].col()

))

The function trgContract performs the contraction of four tensors given the TN described in

TRG_net,

def trgContract (Ss, TRG_net):
for i in xrange(4):
TRG_net .putTensor (i, Ss[i])
return TRG_net.launch ()

The function updateAll performs the renormalization of the tensors,

def updateAll (Ts, Imps, chi, TRG_net):
S =[]
I []
for r in xrange (2):
S.append (trgSVD(r, Ts[r%len(Ts)], chi))

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040

for r in xrange (4):

I.append(trgSVD(r, Imps([r], chi))
a, b, ¢, d=20, 1, 2, 3
Ts = [trgContract ([S[a][0], S[b][0], S[alll]l, S[b][1l]]
maxel = max([Ts[0][i] for i in xrange (Ts[0].elemNum())
Ts[0] *= (1.0 / maxel)

, TRG_net)]
1)

Imps=[trgContract ([S[a]l[0],I[b][0],I[a]lll],S[b]l[1]],TRG net)~*(1.0/maxel),\
trgContract ([S[a][0],S[b][0],I[c](1],I[b]1[1]1],TRG _net)*(1.0/maxel),\
trgContract ([I[c][0],S[b][0],S[al[l],I[d][1]],TRG _net)x*(1l.0/maxel),\
trgContract ([I[a][0],I[d][0],S[al[l],S[b]l[1]],TRG _net)x*(1l.0/maxel)]

return Ts, Imps

The function t rgExpectation compute the expectation value using the impurity tensors,

def trgExpectation(Ts, exp_net):
for step in xrange(4):
exp_net.putTensor (step, Ts[step % len(Ts)])
return exp_net.launch() [0]

The main function reads in the tensor networks (Fig. 6),

TRG_net = unilO.Network ("TRG.net")
exp_net = unilO.Network ("expectation.net")

Construct the o, operator,

bdi = unil0.Bond(unilO.BD_IN, 2)

bdo = unil0.Bond(unil0.BD_OUT, 2)

Mz = unil0.UniTensor ([bdi, bdo], "Mz")
Mz.setElem([1, 0, 0O, -11])

Prepare the double tensors and impurity tensors,

Ts = [makeT (GaL), makeT (GbL)]
Imps = [makeT (Gal), makeT (GbL), makeImpurity(GaL, Mz), makeT (GbL)]

Finally, perform the renormalization steps,
for i in xrange (8):

Ts, Imps = updateAll (Ts, Imps, chi2, TRG_net)
M=trgExpectation (Imps, exp_net)
norm=trgExpectation (Ts, exp_net)

For brevity, the code segments associated with initialization is omitted. The complete pyUnil0 source
code for the transverse Ising model can be found at the Uni10 website [18].

5. Conclusions

We have presented a new, open-source C++ library for the tensor network algorithms. This library is
suitable for implementing a wide range of TN algorithms. In this work we have described the basic
structure of the library, and how to construct a spin-1 Heisenberg Hamiltonian. For more in-depth
documentation, and more elaborate examples using pyUnilO API listed in Table 1, the reader should
visit the Unil0 website at http://www.unil0.org. Further optimization of UnilO using speed
accelerators such as Graphic Processing Unit (GPU) and Many Integrated Core (MIC) architectures and
Matlab wrappers will be available in future releases.

Acknowledgments
We thank Tama Ma and Sukhbinder Singh for their help in the development of Unil0. We acknowledge
inspiring discussions with A. Sandvik, G. Evenbly, G. Vidal, and Ian McCulloch. The support

XXVITUPAP Conference on Computational Physics (CCP2014)
Journal of Physics: Conference Series 640 (2015) 012040

IOP Publishing
doi:10.1088/1742-6596/640/1/012040

(b)

UR: 4, 1; -1

DR: 1, 2; -2

DL: -3; 3, 2

UL: -4; 4, 3

TouT: -1, -2, -3, -4 Figure 6: (Color
online.) (a) A TN

(d) for tensor renor-

malization in the

T1: 8, 1, 4, 5 TRG algorithm.
T2: 7, 5, 2, 1 (b) Network file
T3: 2, 6, 7, 3 TRG.net. (c) A TN
Td: 4,3, 8, 6 for expectation val-
TOUT:

ues. (d) Network file
expectation.net.

from MOST in Taiwan through Grants No. 100-2112-M-002-013-MY3, 100-2923-M-004-002 -MY3,
102-2112-M-002-003-MY3, 101-2112-M-007-010-MY3 as well as the support from National Taiwan
University Grant No. 101R891004 are acknowledged.

Appendix
Here we list the commands available in pyUnil0 (v0.9.1). Full documentation, including API and other
examples, is available at Uni10 Website [18].

Table 1: pyUnilO global constants, functions, classes and class methods.

Constants

BD_IN Defines an incoming bond

BD_OUT Defines an outcoming bond

PRT_EVEN Defines particle parity even in a bosonic system
PRT_ODD Defines particle parity odd in a bosonic system
PRTF_EVEN Defines particle parity even in a fermionic system
PRTF_ODD Defines particle parity odd in a fermioninc system
Functions

contract () Performs tensor contraction

otimes () Performs tensor product

combine () Combines bonds

takeExp () Returns the exponential of a matrix

Onum class

Onum () Creates a quantum number

OnumF () Creates a fermionic quantum number

Qnum. UL () Obtains the U(1) quantum number

Qnum.assign ()
Onum.assignF ()

Assigns a quantum number to Qnum
Assigns a fermonic quantum number to Qnum

Qnum.prt () Obtains the particle number parity
Qnum.prtF () Obtains the fermionic number parity
Bond class

Bond () Creates a bond

Bond.Qlist () Returns the Qnum objects in a Bond

Bond.assign ()
Bond.change ()

Assigns Qnum to Bond
Changes the type of Bond

XXVITUPAP Conference on Computational Physics (CCP2014)

IOP Publishing

Journal of Physics: Conference Series 640 (2015) 012040

Bond.combine ()
Bond.degeneracy ()
Bond.dim ()
Bond.type ()

Combine bonds

Returns the degeneracy of quantum number
Returns total dimension of Bond

Returns type of Bond

doi:10.1088/1742-6596/640/1/012040

Matrix class

Matrix ()

Matrix.
Matrix.
Matrix.
Matrix.
Matrix.
Matrix.
Matrix.
Matrix.

Matrix

Matrix.
Matrix.
Matrix.

Matrix

Matrix.
Matrix.
Matrix.

Matrix

col ()
eigh ()
elemNum ()
getElem ()
identity ()
isDiag ()
load()
norm ()

.orthoRand ()

randomize ()
resize ()
row ()

.save ()

setElem()
set_zero ()
sum ()

.svd ()
Matrix.
Matrix.

trace ()
transpose ()

Creates a matrix

Returns number of columns of Matrix

Returns the eigenvalues and eigenvectors

Returns the total number of elements

Returns the reference to matrix elements

Sets Matrix to 1 on the diagonal and 0 otherwise
Returns whether Mat rix is diagonal

Loads elements of Mat rix from a file

Returns the L2 norm of Matrix

Generates an orthogonal basis with random elements

and assigns to Matrix

Sets the elements of Mat rix with random number in [0, 1)

Resizes Matrix

Returns number of rows of Mat rix

Saves Matrix to a file

Sets the elements of Matrix

Sets all the elements in Mat rix to zero

Returns the sum of all elements

Performs singular value decomposition of Mat rix
Returns the trace of Matrix

Returns the transpose of Mat rix

UniTensor class

UniTensor ()
UniTensor.assign ()
UniTensor.blockNum ()
UniTensor.blockQnum ()
UniTensor.bond ()
UniTensor.bondNum ()
UniTensor.combineBond ()
UniTensor.elemCmp ()
UniTensor.elemNum ()
UniTensor.getBlock ()
UniTensor.getBlocks ()
UniTensor.getElem()
UniTensor.getName ()
UniTensor.getRawElem()

UniTensor.identity ()
UniTensor.inBondNum ()
UniTensor.label ()
UniTensor.orthoRand ()
UniTensor.partialTrace ()
UniTensor.permute ()
UniTensor.printRawElem ()
UniTensor.putBlock ()
UniTensor.randomize ()
UniTensor.save ()
UniTensor.setElem()
UniTensor.setLabel ()
UniTensor.setName ()
UniTensor.setRawElem ()
UniTensor.set_zero ()
UniTensor.similar ()
UniTensor.trace ()

Creates a symmetric tensor

Restructures UniTensor with new bonds

Returns the total number of blocks

Returns the quantum number of a block in UniTensor
Returns a bond in UniTensor

Returns the total number of bonds

Combines bonds

Compares the elements of two tensors

Returns the total number of elements

Returns the block of a given quantum number
Returns the map from quantum numbers to blocks
Returns the reference of the elements

Returns the name of UniTensor

Returns the raw elements of UniTensor with row(column)

basis defined by the incoming (outgoing) bonds

Sets blocks to identity matrix.

Returns the number of incoming bonds in UniTensor
Returns label(s) of UniTensor

Randomly generates orthogonal bases and assigns to blocks

Takes partial trace

Permutes the order of bonds
Prints raw elements of UniTensor

Puts matrix into block

Sets the elements of UnTensor with random number in [0, 1)

Saves UniTensor to file

Assigns the elements to UniTensor, replacing the originals

Assigns a new label of a bond
Sets the name of UniTensor
Assigns raw elements to UniTensor

Sets all elements to zero

Checks if the bonds of two tensors are the same

Takes the trace

XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing

Journal of Physics: Conference Series 640 (2015) 012040 doi:10.1088/1742-6596/640/1/012040
UniTensor.transpose () Transposes all blocks associated with quantum numbers
Network class
Network () Creates a network
Network.launch () Performs the full contraction of Network
Network.profile () Returns the total memory usage of Network
Network.putTensor () Put tensors into Network
Network.putTensorT () Put transposed tensors into into Network
References

(1]
(2]
(3]
(4]
(3]
(6]
(7]

(8]
(9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

Ords R 2014 The European Physical Journal B 87 280-18

White S R 1993 Phys. Rev. B 48(14) 10345-10356

Schollwock U 2011 Annals of Physics 326 96—192

Depenbrock S, McCulloch I P and Schollwock U 2012 Phys. Rev. Lett. 109 067201

Zaletel M P, Mong R S K and Pollmann F 2013 Phys. Rev. Lett. 110 236801

Verstraete F, Murg V and Cirac J 2008 Advances in Physics 57 143-224

Verstraete F and Cirac J 1 2004 Renormalization algorithms for quantum-many body systems in two and higher dimensions
(Preprint cond-mat/0407066)

Vidal G 2007 Phys. Rev. Lett. 99 220405

Evenbly G and Vidal G 2009 Phys. Rev. B 79(14) 144108

Cichocki A 2014 Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions
(Preprint arXiv:1403.2048)

Jordan J, Orus R, Vidal G, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 101 250602

Orts R and Vidal G 2009 Physical Review B 80 094403

Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603

Wang L, Kao Y J and Sandvik A W 2011 Physical Review E 83 056703

Xie Z'Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Physical Review B 86 045139

Lam C C, P S and Rephael W 1997 Parallel Processing Letters 07 157-168

Pfeifer R N C, Haegeman J and Verstraete F 2014 Physical Review E 90 033315

URL http://www.unilO.org

