
Self-Action of Second Harmonic Generation and Longitudinal 
Temperature Gradient in Nonlinear-Optical Crystals  

A I Baranov1,2 , A V Konyashkin1,2, , and 3O A Ryabushkin1,2,3 
1NTO “IRE-Polus”, Vvedensky Sq. 1, Fryazino, 141190, Russian Federation 
2Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudnyy, 
141700, Russian Federation  
3Kotelnikov Institute of Radio-engineering and Electronics of RAS, Vvedensky Sq. 1, 
Fryazino, 141190, Russian Federation 
 
E-mail: abaranov@ntoire-polus.ru 
 
Abstract. Model of second harmonic generation with thermal self-action was developed. 
Second harmonic generation temperature phase matching curves were measured and calculated 
for periodically polled lithium niobate crystal. Both experimental and calculated data show 
asymmetrical shift of temperature tuning curves with pump power. 

1. Introduction 
Despite rapid development of laser physics and quantum optics in last decades, problem of generation 
spectrum broadening of high-power coherent radiation sources is still vitally important in nowadays. 
One of the most efficient ways to deal with this issue is application of nonlinear-optical crystals for 
conversion of pump laser radiation into multiple harmonics [1]. Requirement of coherence 
conservation specifies fulfillment of phase matching condition for pump and generated photons along 
nonlinear-optical crystal length [2]. Wave detuning from phase matching is linear function of 
refractive indices of interacting harmonics. Crystal temperature change in course of laser frequency 
conversion is the main factor responsible for refractive indices variations. As follows, accurate and 
noncontact methods of nonlinear-optical crystal temperature control are needed in case of high-power 
(tens or hundreds Watts) pump radiation nonlinear conversion [3].  

In present paper we introduce novel method for noncontact temperature measurement of nonlinear-
optical crystals during its interaction with laser radiation. Here radiofrequency (RF) impedance 
spectroscopy plays the key role. As every nonlinear-optical crystal possess piezoelectric properties 
then its response to the applied ac electric field strongly varies at frequencies that correspond to 
internal vibration modes of the sample. It is well known that in first approximation piezoelectric 
resonance frequencies linearly depend on temperature. Earlier we introduced application of impedance 
spectroscopy technique for precise temperature measurement of crystal heated by laser radiation [4]. 
Experimental determination of equivalent temperature of nonlinear-optical crystal in course of laser 
radiation frequency conversion was also demonstrated [5]. Moreover piezoelectric laser calorimetry 
was successfully applied for determination of optical absorption coefficients of crystals in wide 
spectral range [6, 7].  

We developed mathematical model that proves validity of equivalent temperature concept, which 
suggests direct temperature measurement of nonuniformly heated crystal using its temperature 
calibrated piezoelectric resonances [8]. Temperature calibration of resonance frequencies is performed 
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in uniform equilibrium heating conditions of the crystal. However, in initial theoretical approach, used 
for determination of resonance frequencies temperature dependence, just two-dimensional temperature 
distribution in crystal cross-section was considered. Temperature gradient along radiation propagation 
direction (third dimension) was assumed to be negligibly small due to very low optical absorption. In 
some experimental cases such simplification can be rough enough and definitely it cannot be relied on 
when considering nonlinear-optical processes of laser radiation frequency conversion. This is evident 
in case optical absorption coefficient at generated frequency is much higher than that at the pump 
frequency. For correct interpretation of obtained experimental data the 3D heat conduction problem 
with distributed heat source, conditioned by energy absorption of two light waves, ought to be solved. 
It should be taken into account that these waves have different values of optical absorption coefficient 
and besides its powers change along crystal length. 

2. Theoretical model  
For the interpretation of our second harmonic generation (SHG) experiments three physical processes 
should be considered. These are second harmonic generation, non-uniform crystal heating due to 
optical absorption, and piezoelectric (acoustic) vibrations of the crystal. However, as crystal vibrates 
in different frequency domain compared to frequencies of interacting light waves, only first two 
processes significantly affect each other. In addition, variation of crystal optical properties caused by 
its acoustic vibrations is negligibly small. So that it will be sufficient to consider optical second 
harmonic generation together with accompanying thermal effects and independently characteristic 
piezoelectric vibrations of the crystal. 

2.1. Coupled equations for second harmonic generation and crystal laser heating. 
Three-dimensional temperature distribution of the nonlinear-optical crystal in process of second-
harmonic generation can be obtained by solving equations that describe nonlinear conversion process. 
We shall consider a dielectric medium with a non-zero component of the quadratic optical 
susceptibility. When electromagnetic waves with electric field strength E propagate in such dielectric a 
nonlinear polarization arises: 

 (2)
0NLP EEε χ= . (1) 

Here ε0 – dielectric permittivity of vacuum, and χ(2) - quadratic susceptibility tensor. If we consider 
interaction of both first and second harmonic waves, then total electric field inside crystal can be 
represented as: 
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Here, A1 and A2 are complex envelopes of the first and the second harmonic respectively, k and K are 
corresponding wave vectors k n cω ω= , 2 2K n cω ω= , 1

pe  and 2
pe  - unit vectors specifying directions 

of polarizations of the interacting waves. By substituting equation (1) into (2) we can obtain 
components of the nonlinear polarization oscillating at the fundamental and doubled frequencies. 
Equation describing the propagation of electromagnetic waves in a nonlinear dielectric can be 
obtained using Maxwell equations: 
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Here (1)
0 (1 )D Eε χ= +  is electric displacement vector, c is speed of light. Performing differentiation 

with respect to space and time, in assumption that medium is both weakly nonlinear and low 
absorbing, and also neglecting the second derivatives of complex envelopes we can obtain following 
equation that describe interaction between the first and second harmonics [2]: 
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Here value 22k K k n c n cω ωω ωΔ = − = −  is so-called wave detuning. Following designations were 

used: 
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From equation (4) we can conclude that process of laser radiation nonlinear conversion occurs most 
efficiently when Δk value equals to zero. And in those regions where Δk is nonzero nonlinear 
conversion efficiency decreases due to nonzero phase difference between interacting waves. As it is 
mentioned above, the temperature of the crystal can strongly affect wave detuning, since the refractive 
index of these waves depend on crystal temperature. Thus for adequate modelling it is important to 
consider not only the "average" crystal temperature but also its distribution in 3D space. 

In order to calculate three-dimensional temperature distribution inside nonlinear-optical crystal in 
process of SHG it is necessary to solve three-dimensional stationary heat conduction problem with a 
heat source represented by absorption of the first and second harmonic energy. 
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Here κcr is thermal conductivity of the crystal, I(x1,x2,x3) is radiation intensity distribution; θcr and θair 
are temperatures of the crystal and air respectively; n is the normal vector to the crystal interface; hT is 
heat transfer coefficient; |∂Γ denotes values at the interface. 

To solve separately system of equations (6), one can use the Rayleigh-Ritz variation principle. It 
allows us to search extremum of the specific functional instead of solving differential equations 
directly [9, 10]. According to variation principle the solution is sought in the form of a linear 
combination of basis functions, which in our case can be represented by following polynomials: 
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Here  T
crhξ κ= .  Degree of each basis function 2m+2n+l does not exceed the natural number N that 

was set equal to 12. Every polynomial in this set satisfies boundary conditions at every facet of the 
crystal. In more details derivation of equations (4) and approach for solving the three-dimensional heat 
conduction problem (6) was introduced in our previous paper [11]. Intensities of first and second 
harmonic, as well as the length of the wave detuning are unknowns here. It was demonstrated that for 
second harmonic generation the longitudinal temperature gradient is much more substantial then 
transvers one. It means that the last one can be neglected. General physical considerations suggest that 
there is certain equilibrium state of the system when overheating of the crystal is compensated by 
second harmonic power decrease, conditioned by increase of phase detuning. Thus, systems (4) and 
(6) can be solved using iterative procedure where the calculated solutions of one system are taken as 
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input parameters for another one. It was ascertained that several dozens of iterations are sufficient to 
obtain consistent solution. 

2.2. Calculation of eigenfrequencies of piezoelectric crystals  
Internal acoustic vibration spectrum of any elastic body can be calculated using Hamilton's principle 
of least action. Vibration pattern and eigenfrequencies of crystal modes are obtained by minimization 
of Lagrangian L of the system [12, 13]. When we deal with piezoelectric material other terms should 
be included into Lagrangian functional. These are electric and piezoelectric parts of potential energy 
[14, 15] 

 ( )( ) ( )2
, , , , , , , , ,

1 1 1 1

2 8 2 2i ijkl i j j i k l l k ijk i j k k j ij i jL u c u u u u e u u dρ ϕ ε ϕ ϕ = − + + − + + Ω 
   . (8) 

Here F,j=∂F/∂xj denotes derivative; ρ is density of the crystal; ui(x1,x2,x3) are the components of 
mechanical displacement of the sample points; cijkl, dijk, εij are elastic, piezoelectric and dielectric 
tensors respectively; φ is electric potential; Ω is the crystal volume. Lagrangian minimization can be 
performed using variation principle and the Rayleigh-Ritz approximation method. However, in case 
crystal is in the form of rectangular parallelepiped (Lx×Ly×Lz) it is more convenient to use other kind 
of expansion functions ψm - normalized Legendre polynomials Pm(x,y,z) [14,15]: 
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Applying separation of variables, every basis function can be represented as a product of Legendre 
polynomials each depending on the individual coordinate. Thus, we can expand unknown functions, 
which are three shift functions in different directions and electric potential function. By substituting 
these expansions into Lagrangian, variation integral problem is reduced to eigenvalue problem of 
specific matrix. Eigenvectors give values of corresponding expansion coefficients and the eigenvalues 
represent piezoelectric resonance frequencies. Figure 1 shows calculation results of typical resonance 
mode vibration amplitude distribution. 
 

 
Figure 1. Calculated amplitude distribution of two 
piezoelectric resonances of the crystal 

 

3. Second harmonic generation in PPLN crystal  
Block scheme of experimental setup for crystal piezoelectric resonance measurement in course of 
second harmonic generation is shown in Fig.2. Periodically polled lithium niobate crystal (PPLN) in 
the form of rectangular parallelepiped with dimensions 4.9×2.6×1 mm3 was used in experiments. 
Polling axis was directed along 1 mm direction. 

Crystal is placed inside capacitor that is connected in series with load resistor R. Crystal response 
to the applied ac voltage from RF generator is analyzed in wide radiofrequency range by measuring 
voltage on R via lock-in amplifier. Both capacitor plates are made of sets of interconnected metallic 
pins allocated at the radial arc. Such configuration helps to minimize uncontrollable heating of 
capacitor plates caused by absorption of scattered radiation. Piezoelectric thermoresonators, made of 
quartz crystals with small cross-section, are placed at certain distance above and under the PPLN 
crystal in order to control air temperature. 
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Figure 2. Block scheme of experimental setup 
 
Temperature calibration of piezoelectric resonance frequencies Rfi(T) was performed when crystal 

was uniformly heated. Thus piezoelectric resonance thermal coefficients prt
iK were determined. As 

follows crystal equivalent temperature change due to heating by laser radiation of P power can be 
obtained by measuring resonance frequency shift (see Ref. [4] for details): 

 ( ) prt
eqΔΘ Δ i iRf P K= . (10) 

Equivalent temperature can be regarded as the true crystal temperature because in this case crystal 
itself acts as thermal probe. 

SHG experiments were carried out using CW single-mode polarized ytterbium fiber laser (λ=1064 
nm, Δλ=0.1 nm) with up to 25 W output power as a pump source. Phase matching equivalent 
temperature curves of PPLN were measured at fixed pump levels when wave detuning value between 
first and second harmonic was changed via thermostat temperature adjusting (see Fig. 3).  

 

Figure 3 Measured (a) and calculated (b) equivalent temperature tuning curves of PPLN 
crystal at different pump levels. 

 
Phase matching temperature that corresponds to maximum second harmonic output power PSH shifts to 
lower temperatures with power dθpm/dP= -0.11 ○C/W. Experimental results reveal that symmetry 
distortion of temperature tuning curves occurs at higher pump levels. Calculated curves exhibit the 
same behavior. The main reason for this is presence of the longitudinal temperature gradient inside 
crystal. However, characteristic width Δθpm=6 ○C of the curve remains almost unchanged. 
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4. Conclusions 
In present paper we have introduced theoretical approach that supposes consideration of SHG problem 
in terms of thermal self-action. Predicted by this model shift and distortion of temperature tuning 
curves with pump power were verified experimentally. Further development of mathematical model of 
nonlinear-optical crystal equivalent temperature in course of SHG should include consideration of 
piezoelectric (acoustical) vibrations of 3D solid in condition of nonuniform transverse and longitudinal 
temperature distribution. 
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