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Synopsis  Sr2 Rydberg molecules are created through two-photon excitation in an ultracold strontium gas con-
tained in an optical dipole trap and are detected through atom loss from the trap.  First order perturbation theory 
employing the Fermi pseudopotential and effective s-wave and p-wave scattering lengths is used to evaluate the 
binding energies of the molecular levels. 

     Scattering of the excited electron in a Ry-
dberg atom from a ground state atom introduces 
a novel chemical bond that can bind the two 
together to form an ultralong-range Rydberg 
molecule [1].  Their creation, however, requires 
ultracold temperatures so that the thermal ener-
gies of the atoms are lower than their binding 
energies, typically ~1-100 MHz, and high-
density samples to ensure a high probability for 
finding two atoms with separations less than the 
radial extent of the Rydberg electronic wave 
function. 

Whereas several studies have reported ob-
servation of Rydberg molecules using alkali 
Rydberg atoms, we report here their first obser-
vation in the alkaline earths using 84Sr atoms 
held in an optical dipole trap (ODT).  The mol-
ecules are created by two-photon excitation via 
the 5s5p3P1 intermediate state using radiation at 
689 and 319 nm.  After excitation, atoms re-
maining in the trap are released and their num-
ber determined by absorption of 461 nm light 
tuned to the 1S0-1P1 transition.  Molecule crea-
tion is detected as trap loss and the molecular 
binding energies are determined by the shift of 
the molecular lines to the red of the atomic line. 

Figure 1 shows the molecular binding ener-
gies observed using n3S1 Rydberg states with 
values of n from 29 to 36 together with the re-
sults of calculations employing first-order per-
turbation theory.  The Rydberg electron-ground 
state atom interaction is described using a Fermi 
pseudopotential and optimized effective s-wave 
and p-wave scattering lengths of -13.2 and 
8.4 a0, respectively.  The agreement between 
theory and experiment is excellent and the bind-

ing energies of the most bound levels obey a 
1/(n-δ)6 scaling law, where δ=3.371 is the n3S1 
quantum defect.  The same scaling law was 
seen earlier in the alkalis [2].  Not all the pre-
dicted lines are observed experimentally due to 
difficulties in resolving closely spaced lines and 
the reduced excitation strengths at the lower n.  

Figure 1. Dependence of the observed and calculat-
ed molecular binding energies on n*≡n-δ for values 
of n from 29 to 36.  The lines indicate 1/n*6 scaling. 
Only calculated levels with binding energies >1 
MHz are included. 
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