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Abstract. We present negative ion formation from collisions of 100 eV neutral potassium 

atoms with acetic acid (CH3COOH) and its deuterated analogue molecules (CH3COOD, 

CD3COOH). From the negative ion time-of-flight (TOF) mass spectra, OH
−
 is the main 

fragment detected accounting on average for more than 25% of the total anion yield. The 

complex internal rearrangement processes triggered by electron transfer to acetic acid have 

been evaluated with the help of theoretical calculations at the DFT levels explaining the 

fragmentation channel yielding OH
−
. 

1. Introduction 

 

The biological effects of radiation induced reactions are known to be essentially produced by the 

secondary species generated along the radiation track. The vast majority of these species are secondary 

electrons (< 20 eV) [1, 2], which are found to be more efficient producing degradation than the 

primary radiation. These landmark studies [2] have shown the effectiveness of low-energy electrons 

(LEE) to produce single and double strand breaks in DNA, which were rationalised on the basis of 

single electron interactions with DNA subunits through formation of transient negative ions. Even at 

sub-excitation energies, LEEs are extremely efficient in damaging DNA owing to their ability to 

promote fragmentation through the decomposition of its building blocks [2]. It is now well-established 

that the degradation mechanism is described at the molecular level. As such, the relevance of negative 

ion chemistry of isolated biological molecules can provide valuable insights on the underlying 

molecular mechanisms, with the uttermost need to evaluate such processes within the physiological 

environment. 
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Negative ion chemistry can be explored not only in the context of free electron interactions, but from 

the point of view of atomic collisions, where in the latter, an electron is transferred from a donor 

projectile to the target molecule inducing different fragmentation pathways than those attained in free 

electron attachment experiments (e.g. ref. [3]). The presence of free electrons in the physiological 

environment is somewhat of an insufficient model on how electron-induced reactions may occur. As 

such, studies on electron transfer seem to be more attuned and can provide valuable insight of the 

underlying mechanisms that lead to molecular decomposition. Here we focus our interest in atom-

molecule collisions, where a weakly bound valence electron is transferred from the projectile (neutral 

potassium atom) to the bio target molecule. 

 

The electron transfer process happens when electrons follow adiabatically the nuclear motion in the 

vicinity of the crossing of the stationary non-perturbed states [4], i.e. the covalent and the ionic 

diabatic states (from the crossing of the covalent and the ionic diabatic potential surfaces, see Figure 

1). For simplicity, let us consider a diatomic molecule, although for polyatomics hyperdimensional 

surfaces must be similarly considered. The ionic surface lies above the covalent surface, the 

endoergicity (ΔE in units of eV) at large atom-molecule distances being: 

 

ΔE = IE(K) – EA(ABC)        (1) 

 

where K stands for the potassium atom and ABC a molecule. However, due to the Coulombic 

interaction there is a crossing point, Rc, for which both stationary non-adiabatic potential energy 

surfaces have the same value [4]. Rc, is given by [5]: 

 

Rc = 14.41 / ΔE [Å]        (2) 

 

During the collision process and near that crossing (Rc), there can be a perturbation of the stationary 

states induced by the projectile or target nuclear motion leading to an adiabatic coupling. This leads, 

after the collision path, to the formation of a positive ion K
+
 and a molecular temporary negative ion 

(TNI) allowing access to parent molecular states which are not accessible in free electron attachment 

experiments [3, 5, 6–8].  

 
Figure 1. Schematic potential energy curves of two adiabatic states V1-2(R) and V2-1(R) as a function 

of the internuclear distance R(A-B), and trajectories with adiabatic and non-adiabatic transitions 

(diabatic states 1-1 (covalent) and 2-2 (ionic)); Rc stems for crossing radius and ΔE for the 

endoergicity. Adapted from [9]. 

 

In effect, even if the free negative molecular ion is unstable towards autodetachment, in the collision 

complex it can be stabilized at distances shorter than the crossing between the two potential energy 

surfaces. This is due to the attractive interaction with the positive ion (K
+
) [8]. The negative molecular 
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ion lifetime will depend on the collision time and not only on the natural lifetime of the resonant 

anionic state. Indeed, when the parent negative ion has a lifetime longer than the fragmentation times, 

the excess energy may be distributed over the available internal degrees of freedom and so influence 

the type of fragmentation ions formed in the collision. 

We note an extensive work on dissociative electron attachment studies [10] (and references therein), 

whereas those pertaining to electron transfer from atom-molecule collision experiments are somewhat 

scarce, with literature only available for pyrimidine-like bases [3, 11–15], their halogenated 

derivatives [7], sugar unit surrogates [16–18] and pyrimidine-sugar uridine molecules [19]. Relevant 

electron transfer studies have been also reported for short chain amino acids [20, 21].  

The present work is part of a wider research programme on electron transfer in atomic collisions 

aimed at understanding low-energy electron damage to DNA/RNA-constituent molecules. Some 

previous studies on pyrimidine bases and their derivatives have shown significant differences in the 

fragmentation patterns against dissociative electron attachment (DEA) and electron transfer 

experiments [3, 8], which for the latter have been attributed to the role of the potassium cation (K
+
) 

post-collision delaying autodetachment. 

Here we present a set of data on negative ion time-of-flight (TOF) mass spectra on our recent 

investigations regarding OH
–
 formation from collisions of neutral potassium atoms with acetic acid 

molecules and its deuterated analogues. The dissociation mechanisms have been thoroughly 

investigated by performing comprehensive experiments on its deuterated analogues, CH3COOD and 

CD3COOH together with quantum chemical calculations. 

2. Experimental setup 
 

The experimental setup used to obtain the negative ion time-of-flight (TOF) mass spectra has been 

described elsewhere [3, 8]. Briefly, an effusive molecular beam crosses a primary beam of fast neutral 

potassium (K) atoms. K
+
 ions produced in a potassium ion source were accelerated to 100 eV, before 

passing through an oven where they resonantly charge exchange with neutral potassium to produce a 

beam of fast (hyperthermal) atoms. Residual ions from the primary beam are removed by electrostatic 

deflecting plates outside the oven. The intensity of the neutral potassium beam was monitored using a 

Langmuir-Taylor ionisation detector, before and after the TOF mass spectra collection. Ionic currents 

of the order of a few hundreds of pA were detected at 100 eV lab frame collision energy. The effusive 

beam of acetic acid molecules was then introduced into a 1 mm diameter source where it was crossed 

with the neutral hyperthermal potassium beam between two parallel plates at 1.2 cm mutual 

separation. The anions produced were extracted by a 220 Vcm
−1

 pulsed electrostatic field. The typical 

base pressure in the collision chamber was 1×10
−5

 Pa and the working pressure upon sample 

admission was 1×10
−3

 Pa. Mass spectra were obtained by subtracting the background signal from the 

sample measurements. TOF mass spectra calibration was carried out on the basis of the well-known 

anionic species formed after potassium collisions with the nitromethane molecule [8]. This allows for 

safe mass assignment, even when the width of the peaks is larger than 1 m/z. 

The samples were purchased from Sigma-Aldrich with a minimum purity of ≥ 99%. They were used 

as delivered and degassed by a repeated freeze-pump-thaw cycles. 

3. Results and discussion 
 

Acetic acid and formic acid have been studied by DEA experiments [22–24] where the main focus was 

given on the dehydrogenated parent anion formation. Meanwhile, DEA theoretical calculations of 

Rescigno et al. [25] have shown that upon electron capture, formic acid proceeds through a π*C=O 

resonance leading to OH excision. Such mechanism is only possible if the nuclear wave packet 

survives long enough to diabatically couple with σ*OH leading therefore to dissociation. 

Notwithstanding, the calculations of Gallup et al. [26] on the DEA cross sections for formic acid, 

suggest that the mechanism of H loss involves electron capture into a σ*OH orbital only, where the 
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prevalent π*/σ* coupling of Rescigno et al. [25] is not the main dissociation mechanism. The recent 

experimental data of Allan et al. [24] on formic acid, lends support to Gallup et al.’s [26] mechanism. 

We note experimental evidence for the role of the π*CO orbital in electron transfer to gas phase 

oriented acetic acid molecules, where intramolecular electron transfer allows accessing σ*OH orbital 

leading to O–H bond cleavage [27]. The acetic acid and its deuterated analogues negative ion TOF 

mass spectra obtained for 100 eV potassium collision energies in the lab frame are presented in Figure 

2(a)–2(c), with peak assignments in Table 1. A brief analysis of these data shows that the most 

abundant fragments are assigned to OH
−
 (17 m/z), followed by CH3COO

–
 (59 m/z) / CD3COO

–
 (62 

m/z) and O
−
 (16 m/z). Other less intense fragment anions have been detected, where we also note that 

there is no evidence of parent anion formation. It is relevant that such anion formation was not 

reported in DEA experiments [22, 23]. 

 
 

Figure 2. Negative ions time-of-flight mass spectra in collisions of potassium atoms with acetic acid 

and its deuterated analogues at 100 eV. 

 

(m/z) CH3COOH CH3COOD CD3COOH 

Proposed anionic assignment 

62 – – CD3COO
–
 

59 CH3COO
–
 CH3COO

–
 – 

45 HCOO
–
 HCOO

–
 HCOO

–
 

42 – – CDCO
–
 

41 CHCO
–
 CHCO

–
 – 

18 – OD
–
 OD

–
 / CD3

–
 

17 OH
–
 OH

–
 OH

–
 

16 O
–
 O

–
 O

–
 

15 CH3
–
 CH3

–
 CDH

–
 

1 H
–
 H

–
 H

–
 

 

Table 1. Assignment of TOF mass spectra anionic species formed in collisions of potassium atoms 

with acetic acid and its deuterated analogues at 100 eV. 
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The dissociation mechanism in potassium collisions yielding a neutral H atom and CH3COO
–
 / 

CD3COO
–
 anions can be regarded as a pseudodiatomic behaviour. In this context, we recall Equation 

(1) and for large potassium-molecule values, the van der Waals and induction forces can be neglected 

and consequently the covalent potential is zero and the ionic potential is purely Coulombic. If this 

approximation holds, Rc is given by Equation (2), where ΔE is expressed in eV. Taking CH3COOH 

calculated adiabatic electron affinity as -1.302 eV [28], the value for Rc is found at ~ 2.6 Å. The 

corresponding total cross sections for ion-pair formation will be of the order of πRc 
2
, which is much 

larger than the corresponding gas kinetic cross sections. Here we are particular interested to explore 

the complex internal rearrangement process yielding OH
–
 formation and so we restrict ourselves to the 

discussion on this fragment only. However, a thoroughly discussion on the other fragment anions 

formation as a function of the collision energy, which is far beyond the scope of this contribution, is 

due to appear soon [29]. 

 

OH
–
 is the prevalent fragment anion in collisions of potassium atoms with acetic acid and its 

deuterated analogues molecules (Figure 2). A close inspection of Table 1 reveals that such anion 

formation in K – CH3COOD collisions does not result from a direct dissociation process but rather 

through a complex mechanism, which may certainly involve internal rearrangement in the precursor 

TNI yielding OH
–
 formation. In order to infer the underlying molecular mechanism yielding the 

hydroxyl anion formation, we have performed comprehensive DFT calculations. For further details on 

the theoretical methods and thoroughly discussion, see reference [30]. 

 

Neutral acetic acid shows two limiting conformations of the COOH terminal group (see a and b in 

Figure 3), where a is 0.2 eV more stable than b. However, upon electron capture, this order is reversed 

and an energy difference of 0.1 eV is found between the two anionic conformers, schematically shown 

in Figure 3. 

 

 
 

Figure 3. Geometries of the two lowest energy conformers of acetic acid radical anion and the diol 

(CH2COHOH•–
) structure. For further details see ref. [30] 

 

In the electron transfer process from the neutral K atom to the acetic acid molecules, the single 

occupied molecular orbital (SOMO) is mainly localized on the OH and the CH3 groups. Direct 

cleavage of the C-OH bond leads to OH  (radical) formation. This mechanism was discarded since no 

OH radical experimental observed. Two different pathways might result in the hydroxyl anion 

formation, but calculations have shown that the lowest energy pathway involves H atom release from 

the COOH group, prior to subsequent intramolecular rearrangement to eliminate OH
–
 (Figure 4). The 

production of a reactive H atom and the negative carboxylate anion in the first step occurs with an 

energy barrier of 0.5 eV. This is followed by an intramolecular H transfer from the CH3 group to CO, 

resulting in an intermediate transition state (TSI1/I2) at 2.7 eV. Next, the diol structure is formed by 

addition of the free hydrogen atom to the CO group (barrierless process, 0.1 eV) and finally OH
–
 and 

CH2COH  are formed through fragmentation of a C-OH bond (1.36 Å). This result lends support to the 

TOF mass spectra obtained in collisions of potassium atoms with acetic acid and its deuterated 

analogue molecules. The alternative mechanism proceeds by H transfer from CH3 to form a diol 

structure followed by OH bond rupture, with a highest barrier of 2.9 eV [30]. A close comparison 

between the two pathways reveals that the global barriers differ by a small amount (0.2 eV), meaning 
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that there is a kinetically favoured route. In both cases, the energy barrier corresponds to an 

intramolecular rearrangement where H is transferred from the CH3 group to the CO group.  

 

 
Figure 4. Lowest energy profile (eV) for OH

–
 formation from CH3COOH

–
 (distances in Å). Adapted 

from ref. [30] 

 

Although calculations support the pathway in Figure 4 as the most favourable mechanism yielding 

OH
–
 formation, experimental results (Figure 2) suggest a competition with the alternative one, in 

agreement with the small difference in the calculated barriers. OH
–
 formation from CD3COOH seems 

to be mostly supported by the pathway in Figure 4, with H atom abstraction from COOH and 

subsequent intramolecular rearrangement to eliminate the hydroxyl anion. However, OH
–
 formation 

from CH3COOD is mostly described through the other pathway. In both cases, we note that the diol 

structure is a transient species formed in these complex intramolecular rearrangement processes 

leading to fragmentation. 

4. Conclusions 
 

The present work provides a combined experimental and theoretical study on negative ion formation 

in collisions of potassium atoms with acetic acid and its deuterated analogue molecules. We note that, 

in the temporary negative ion (TNI), a diol transient structure is formed through a combined complex 

internal rearrangement mechanism, with an H atom being transferred either from the CH3 or from the 

COOH groups. These will lead to a considerable internal energy conversion through the transition 

states, ending in OH
–
 elimination. 
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