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Abstract. The couple stress theory is applied to describe the size effect in elastic thin plates. 

An extended equation is developed which is available for the bending problem of the plate 

whose thickness is close to the material length. A comparison with micropolar theory of plates 

is made. 

1.  Introduction 

In elasticity,  , , 2ij j i i ju u    and 2k kij ije   are called, respectively, the rotation tensor and 

rotation vector. However, the two rotations do not play role in the classical elasticity actually. Mindlin 

[1] discussed the effect of the rotation gradient on deformation and indicated that the rotation gradient 

gives rise to bending and twisting of an element. Then, a concept of couple stress was introduced, 

which acts on the element and produce the bending and twisting.  A linear relationship between the 

couple stress and the curvature is assumed. The proportional coefficient is called the modulus of 

curvature. Thus, a material constant is introduced into the equations of elasticity, which is a length 

equal to the square root of the ratio of the modulus of curvature and the modulus of shear. Since the 

presence of the material length as an intrinsic parameter in the equations of elasticity one can analyze 

the size effects in deformation problem. 

In the classical theory of thin plates, the effect of the rotation gradient on deformation is also 

neglected. The contribution of the couple stresses on the moment resultant is not taken into account. 

Of course, the classical equation for thin plates can not be use to describe the size effects. 

In the present paper an extended theory for thin plates is developed. In the theory, the bending and 

twisting of element are allowable, the curvatures of the bending and twisting are considered to be 

associated with couple stresses. Total moment resultants consist of two parts, one of which is the 

resultant due to stresses, and the other is that due to couple stresses. In extended equations the material 

length is explicitly included in the bending stiffness of plates as a size effect term. The presence of the 

size effect term indicates that the bending stiffness of plates significantly increases and is larger than 

the classical theory of plates suggests as the thickness of plates is close to the material length. This 

coincides with the observation in lots of experiments. As a special case, when the thickness of plates is 

greatly larger than the material length, the extended equation is reduced to the classical equation of 

plates. 

2. Curvature and Couple Stress 
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The gradient of the rotations 
x  and 

y  results in the curvatures, which are measured by the 

curvatures tensor   in the form 
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The quantity energetically conjugated with curvature   is couple-stress  . The isotropic 

constitutive equations between   and   are given by Eringen in [3] and Nowacki in [4] as 

    ij ij kk ij ji              (2) 

where the constants   and   are the curvature modulus. Substituting (1) into (2) yields 
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3. Moment Resultant 

The moment resultants  produced by stresses are: 
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where 
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in which D  is the bending rigidity of plates, G  is the modulus of shear, E  is Young’s 

modulus,   is Poisson’s ratio, respectively. 

Additionally, the moment resultants produced by couple stresses are: 
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Then the total moment resultants are 
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4. Strain energy and equilibrium equation 

The strain energy of a plate can be written as 

 U U U    (8) 

where 
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By defining 
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the strain energy (9) can then be written in the matrix form: 
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By defining 
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Here, the relation 
 
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 is used. Finally, the total stiffness matrix is 
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It may be seen that the ratio of the curvature modulus   and the shear modulus G  has the 

dimensions of the square of a length such that  
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 2Gl   (18) 

where l  is called as material length on which the influence of couple stresses depends strongly. 

By substituting (18) into (17) the total stiffness matrix finally becomes 
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The total strain energy is written as 
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It may be seen that the bending stiffness of plates increases from D  to 
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curvature of materials is taken into account. The term  
2

12 l h  describes the size effect. 

Sequentially, the classical equilibrium equation is extended to the new form: 
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It may be seen that the stiffness in the equilibrium equation (21) is identical with the stiffness in the 

strain energy (19). 

5. Conclusions 

It can be seen that taking couple stresses into account results in a term  
2

12 l h  arising in the stiffness 

of plates which expresses the size effect. Obviously, when the thickness of plates h  is greatly larger 

than the material length l , equation (21) reduces to the classical equation of plates. Contrarily, the size 

effect term  
2

12 l h  even becomes a leading term in the stiffness of plates. It is well known that the 

material length of most metals is of the order of micrometers. This indicates that the proposed 

equation (21) in the present paper is applicable for the metal plates of micrometer scale. 
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