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Abstract. A fast greedy sparse (FGS) method of cardiac equivalent current sources 
reconstruction is developed for non-invasive detection and quantitative analysis of individual 
left ventricular torsion. The cardiac magnetic field inverse problem is solved based on a 
distributed source model. The analysis of real 61-channel magnetocardiogram (MCG) data 
demonstrates that one or two dominant current source with larger strength can be identified 
efficiently by the FGS algorithm. Then, the left ventricle torsion during systole is examined on 
the basis of x, y and z coordination curves and angle change of reconstructed dominant current 
sources. The advantages of this method are non-invasive, visible, with higher sensitivity and 
resolution. It may enable the clinical detection of cardiac systolic and ejection dysfunction. 

1. Introduction 
Left ventricular torsion can be derived from the twisting of the heart along its long axis [1, 2]. It has 
been investigated by several measurement and imaging techniques, such as magnetic resonance 
imaging (MRI), tissue Doppler imaging by echocardiography, two-dimensional ultrasound speckle 
tracking imaging, speckle tracking imaging, and velocity vector imaging. There has been much 
interest in the analysis and description the function of the left ventricular torsion, torsion assessment of 
systolic and diastolic dysfunction regarding various cardiac diseases, and the knowledge for clinical 
diagnosis. 

It is very important to evaluate the accuracy of left ventricular torsion detection. However, 
detection and quantitative analysis of left ventricular torsion are difficult, because of the physiological 
variability of ventricular torsion, e.g. the size and diameter of the left ventricular vary in a cardiac 
cycle, and the limitations of various measurement approaches that may show some conflicting results 
[2]. In previous research, most of the approaches focused on the angle and direction of left ventricular 
torsion [1]. At present, no gold standard of quantitative analysis has been established for the 
ventricular torsion detection. 

In this paper, we propose a magnetic imaging approach to detect the left ventricular torsion. It is 
divided into three processes: acquisition of magnetocardiography (MCG) data using a multichannel 
superconducting quantum interference device (SQUID) system, reconstruction and imaging cardiac 
moving current sources through solving the cardiac magnetic field inverse problem, and detection of 
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the left ventricular torsion by means of the position coordination and angle change curves of 
reconstructed dominant current sources.  

In general, current source reconstruction needs to solve a highly ill-posed inverse problem, in 
which the distributed source number is more than that of measurement points, so that an optimization 
method needs to be used. Since MCG maps were mainly dipolar, we assume the unknown sources are 
sparse. Thus, the underlying inverse problem can be expressed as finding a minimal numbers of basis 
vectors that represent the solution of interest, i.e., to find the 0l -based sparsest solution [3].  

We developed a sparse solution of the cardiac source reconstruction based on the distributed 
current source model [4]. In addition, we investigated a fast greedy sparse (FGS) algorithm for solving 
the highly ill-posed problem of source reconstruction. Thereby, the sparse sources with larger strength 
can be identified efficiently. This has been demonstrated by a series of simulation experiments and the 
results of real MCG data.  

We try to detect a twisting movement of the ventricle by means of the continuity analysis of the 
dominant current sources trajectories of x, y and z direction, i.e., the number of times of the position 
and the angle change of the dominant current sources occurring in the QRS complex of a cardiac cycle, 
based on a fixed coordinate system corresponding the measurement plane on the body surface.  

2. Methods 
The MCG inverse problem is expressed by the linear distributed source model as  

                                                                          (1) 
where b is a M ×1 measurement signal vector, which acquired by  SQUID sensors on a 
measurement plane over the human thoracic surface.  is a N ×1 source moment vector of  
distributed current sources.  is a  lead field matrix.   represents the measurement noise. Due 
to ,  is highly underdetermined, so that equation (1) has no unique solution. It is common to 
search for an optimal x by reducing the number of unknowns or constraining dipole orientations.  

We developed a fast greedy sparse method of current source reconstruction and achieved a sparse 
solution on the basis of the sparse decomposition theory [5]: 

                                                                          
(2) 

where  is a sub-vector of  x, . n is the iteration number.  is a sub-matrix of 

.  is the Moore-Penrose inverse. The directional optimization of the source moment vector can 

be obtained [6]: 
                                                                 (3)  

where 
na is the step-size that can be determined explicitly.  denotes an approximate conjugate 

gradient pursuit to optimize the source direction. 
We adopted the strategy of selecting several elements per iteration, calculating the depth of 

distributed sources based on a hierarchical source space and simultaneously improving the time-
consuming and accuracy of sparse source reconstruction based on a priori knowledge of the MCG map 
[5, 6], thereby significantly decreasing the computational complexity. In addition, we chose the 
reconstructed sparse sources whose strength ≥ 90% of the maximum at any instant as dominant 
equivalent current sources with the aim of reducing the number of sources under consideration, which 
may be caused by the measurement noise or the cases that can be neglected here. 

3. Current source reconstruction 
The fast greedy sparse (FGS) algorithm is tested by real MCG data for equivalent current source 
reconstruction. As shown in figure 1, MCG data were recorded by a 61 channel biomagnetometer 
(Magnes1300C, 4D Neuroimaging, San Diego, USA) inside a standard 3-layered magnetically shielded 
room (AK3b, Vacuumschmelze, Hanau, Germany). Over a circular area of 824 cm² with a sensor 
spacing of ca. 38 mm, the signals were measured for 3 minutes in each subject, at a sampling rate of 1 
kHz with a 200 Hz low pass filter. 
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The sparse current sources were reconstructed by the FGS algorithm using MCG data during QRS 
complex. The x, y and z coordination and angle change curves of reconstructed dominant 
current sources from a healthy subject and a CAD patient are shown in figure 2, where the time 
interval of (t2-t1) and (t2-Qon) are shown by red and blue broken lines, respectively. The reconstructed 
source trajectories start at Q-wave onset and end at the Jpoint.  
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Figure 1. A circular measurement area with 61 sensors 
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(a) the healthy subject                                                  (b) the CAD patient 

Figure 2. The reconstructed spatial source trajectories during QRS complex from the healthy subject 
(a) and the CAD patient (b) The time interval of (t2-t1) and (t2-Qon) are shown by red and blue 
broken lines, respectively. 

4. Detection of the left ventricular torsion 
The trajectories permit the calculation of the time interval between two obvious position changes 
occurring before and after the R peak in a cardiac cycle indicated by (t2-t1), and a second time interval 
starting at Q-wave onset and the second position change (t2-Qon), which is the time, about 40-60 ms, 
that the mechanical motion falls behind electrical activities of the atrium and the ventricle of the heart.  

Figure 2 shows the time intervals of t2-t1 and t2-Qon of the CAD patient are a little longer than 
that of the healthy subject. The results of detection the left ventricular torsion from 39 healthy subjects 
and 15 coronary artery disease (CAD) patients showed that source trajectories of 35 healthy subjects 
and 14 CAD patients displayed at least two position changes in x (or y) direction during the QRS 
complex, where the time interval between the two obvious position changes of the 33 healthy subjects 
was 12 to 35ms, and 10 CAD patients was 16 to 46ms. 26 healthy subjects had position changes 
between 41 and 61ms after the beginning of the QRS complex, and 10 CAD patients were 48 to 64ms. 
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Because of the given source space resolution in z-axis different from that in x and y-axes, the 
trajectory change in z direction also has a little different. We chose two better examples of 
reconstructed source trajectories to show in figure 2. Namely, in some results with poor 
reconstructions may be difficult to accurately detect and determine the time of twisting of the heart. 

5. Conclusion 
We developed a fast greedy sparse (FGS) method and it has been tested for non-invasive cardiac 
equivalent current source reconstruction. The left ventricle torsion during systole is detected and 
quantitatively analyzed on the basis of position curves and angle change of reconstructed dominant 
current sources. The advantages of this method are noninvasive, visible, with higher sensitivity and 
resolution. It may enable the clinical detection of cardiac systolic and ejection dysfunction. The 
statistical analysis with a number of real MCG data is needed to fully validate the effectiveness of this 
technique. 
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