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Abstract. The magnetic field and Hall current effects have been considered on blood velocity
and concentration of low-density lipoprotein (LDL). It is important to observe those effects to
the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to
some clinical procedures, such as MRI, where the radiologists may have more information in
the investigations before cardiac operations could be done. In this study, the uniform magnetic
field and Hall current are applied to the Newtonian blood flow through an artery having a
cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved
employing a finite difference Marker and Cell (MAC) method with an appropriate initial and
boundary conditions. The graphical results of velocity profiles and LDL concentration are
presented in this paper and the results show that the velocity increases and concentration
decreases as Hall parameter increased.

1. Introduction

Cardiovascular disease which is also known as heart disease is proved as a leading cause of death
globally from the study conducted by World Health Organization [1]. The heart failure is a condition
in which the heart unable to pump enough blood to meet the body’s needs [2]. This situation can be
caused by aortic stenosis, a narrowing of the aortic orifice of the heart or the aorta near the valve. The
stenosis is caused by atherosclerosis or the accumulation of macromolecules such as low-density
lipoprotein (LDL) in the arterial wall which is known as plaque. The development of atherosclerosis is
strongly related to the characteristics of the blood flow in the arteries [3].

Chakravarty et al. [4-6] investigated the flow behavior of blood in a different shape of stenotic
artery. The blood is considered as a Newtonian fluid. Further studies of unsteady blood flow coupled
with mass transfer through arterial stenosis have been reported by [7-9]. Mass transport is a movement
of atherogenic molecules such as LDL and oxygen within the blood flow and arterial wall. This
movement has been proved to contribute in the formation of stenosis.

Dynamics of biological fluid in the presence of magnetic field has developed great interest among
researchers due to its importance in various implications in the bioengineering and medical technology.
The development of magnetic devices for cell separation, targeted transport of magnetic particles as
cancer tumor treatment, magnetic wound or drug carriers causing magnetic hyperthermia, reduction of
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bleeding during surgeries and the development of magnetic tracers, are well-known applications in this
domain of research [10-11]. The most characteristic biological fluid is blood, due to the complex
interaction in which behaves as a magnetic fluid. If a magnetic field is applied to a moving and
electrically conducting fluid, it will induce electric and magnetic field and the interaction of these
fields produces Lorentz force. By Lenz’s law, the Lorentz force opposes the motion of conducting
fluid and since blood is an electrically conducting fluid, the magnetohydrodynamic (MHD) principles
may be used to decelerate the flow of blood in human arterial system and thereby it is useful in the
treatment of certain cardiovascular disorders.

The current trend for MHD flow is towards a strong magnetic field, so that the influence by
electromagnetic force is noticeable. When the applied magnetic field strength is large and the
conducting fluid is an ionized gas where the density is low, the conductivity normal to the magnetic
field is reduced due to the spiraling of electrons and ions about the magnetic lines of force before
collisions take place and a current is induced in a direction normal to both the electric and magnetic
fields. This phenomenon is known as the Hall effect [12-14]. Fluid flow characteristics of blood flow
in stenosed arteries with the presence of magnetic field are investigated by [15-16]. Recent study by
[17] investigated the influence of magnetic field with Hall currents on blood flow through a stenotic
artery. The results obtained show that the axial velocity increases as the Hall parameter increases.

Therefore, the aim of this present paper is to investigate the distribution of the velocity and mass
concentration with the presence of magnetic field and Hall current. It is assumed that the arterial
segment to be a cylindrical tube with a cosine-shaped stenosis and the blood flow through it to be a
Newtonian fluid. The corresponding governing equations consists of continuity, axial and radial
momentum and also mass transfer equations are solved using finite-difference scheme known as MAC
method. This study will explore the effects of Hall parameter, Hartmann, Reynolds and Schmidt
numbers on axial and radial velocity as well as mass transfer concentration.

2. Mathematical formulation

2.1.  The geometry of stenosis
The geometry of stenosis, R(z,¢) for this study is described mathematically as

R(Z,l): a(t%l—%{l'FCOS{ﬂ-(ZZ—;ZI)}}}, Z,—Z, <z< Z +ZO (1)

als otherwise

where Ry is a constant radius of normal artery in the non-stenotic region, z is axial direction of stenosis,
zo is half-length of stenosis, z; is centre of stenosis and ¢ is critical height of the stenosis. Time-variant
parameter in (1), a(¢) is given by

a(t) =1+k, cos(ewt — @)

where kz is a constant, ¢ is time, @ = 27zfis the angular frequency with f is the pulse frequency and ¢ is
the radius phase angle. The diagram of the geometry of stenosis is shown in figure 1.
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Figure 1. The schematic diagram of cosine-shaped stenosis.

2.2.  Governing equations

Let us consider (7, z, 8) to be the coordinates of the material point in the cylindrical coordinates system
where the z-axis is taken along the axis of the artery while » and 6 are taken along the radial and
circumferential directions, respectively. In this study, blood flow in the constricted artery segment is
considered to be two-dimensional, unsteady, incompressible and the fluid is assumed to be Newtonian
fluid. The governing equations corresponding with this study consist of continuity, momentum and
mass transfer equations. The dimensionless conservative governing equations can be written as:

yow o) @)
Oz or
2 2 2 2 _
ow O(wu) owt (wu) __dp, 1 (0w, 10w, Ow) M7 (muw) 3)
ot or 0z r 0z Relor" ror oz Re (1+m2)
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ou ow’ o(wu) w'_ op 1 (&u 1ou O _u) M (utmw) 4
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ot or 0z ReScl\or~ ror oz

where u and w are the radial and axial velocity components along the - and z-axes respectively, p is
pressure, r is radial axis, C is the mass concentration, Re=U,,p/u is Reynolds number,

M = B, (0'/ ,u)% is the Hartmann number and used as the dimensionless parameter of the magnetic

field, m is Hall parameter and Sc = x/pD is the Schmidt number with p is density of blood, u is

dynamic viscosity, D is the coefficient of diffusion, Up is mean velocity and 7y is the normal radius in
the arterial segment.

2.3.  Boundary and initial conditions

Along the symmetry axis of the artery, the radial flow is zero. Therefore, the normal component of the
radial velocity and the axial velocity gradient and the mass concentration gradient of the blood along
the axis are vanished which means that the shear stress does not exist. These may be stated
mathematically as

ow(r,z,t) () = oC(r,z,t) _

atr=0,
or or

0. (6)
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The radial velocity at arterial wall may be assumed to be equal to the changes of radius of the
arterial segment in the constricted artery. Hence the velocity boundary conditions on the arterial wall
obey the no-slip condition and can be written as

atr=R, w(r,z.0)=C(r,z,0)=0, u(r,z,t)zz_lf‘ 7

The inlet velocity (when z = 0) conditions are assumed to be fully developed with parabolic
velocity profile corresponding to Hagen-Poiseuille flow through a long circular tube. The mass
concentration is assumed to be constant. It is provided with evidence by study of Mustapha et al. [11]
as

atz=0,for M =0, w(r,z,t)=2(1-x"),u(r,z,t)=0,C(r,z,t)=1, (8)
- _ 1 (MR) [ L, (M) _ _ 9
at z=0,for M #0, w(r,z,t)—2[IO(MR)_J[l [[O(MR)j],u(r,z,t)—O,C(r,z,t)—l- ©)

At the outlet (when z = L), where L is the finite length of the arterial segment, the velocity gradients
and mass concentration gradient are taken to be traction-free conditions and can be stated as
ow(r,z,t) ou(r,z,t) 0C(r,z,t) 0 (10)

atz=1,
0z 0z 0z

It is also assumed that no flow takes place when the system is at rest (¢ = 0) except at the inlet,
att=0,forz>0, w(r,z,0)=u(r,z,0)= p(r,z,0)=C(r,z,0)=0. (11)

3. Marker and Cell (MAC) method

The governing equations (2-5) together with initial and boundary conditions (6-11) are solved
numerically using the finite difference scheme known as MAC method. This method is based on the
central difference approximations for the uniform spatial derivatives and the forward difference
formula for time derivatives. The discretized form for the continuity equation is

who—wf k - xut —x, uf
x, Ry | ———— _(xli)2 OR ) [ 2o =Wy ) Xith ~Xicilin _ (12)
Az oz )\ Ax Ax

with z; and x;; are represents the respective coordinates of the cell centre while z; and x; represents the
cell at the top right corner of the (i, /)" control volume.

Meanwhile, the discretized form of the axial momentum equation can be written into the form

k+1 k k k k
Wi,; Wi _ Pij = P +ﬁ a_R PPy +(W )k (13)
At Az R\ oz ), Ax el
Finally, the discretized form of the radial momentum equation can be put in the form
K+l k ko k
I/li,j M,-ﬁj _ Lk pi,j pi,j+1 n (ume )k A (14)
At R, Ax I

where all the terms are given in [9], in details.

On the other hand, the discretization of the convection-diffusion equation for mass transfer can be
written as
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4. Results and discussion

The governing equations (12-15) corresponding with the boundary and initial conditions have been
solved numerically using finite difference method which is known as Marker-and-Cell (MAC) method.
Results for present paper are obtained for Re = 450, Sc =5, M =1, 2, 5, 10, 20, and m = 1, 2, 5, 10.

The geometry of stenosis considered in this study is cosine-shaped stenosis. From figure 1, it is shown
that there are two regions represent the non-stenotic region or normal artery and stenotic region. For z
=0 until 1 and z = 3 until 5 are known as non-stenotic regions while the stenotic region located at z = 1

until 2 where the critical height of the stenosis occur at z = 0.7241 with J = 0.276.

Figure 2 illustrates the behavior of the axial velocity profiles for different magnetic field at z = 3.5
and Re = 450. It can be seen that the shape of the velocity profiles varies depending on the intensity of
the magnetic field applied. As magnetic field increases, the axial velocity becomes flatter and the
velocity gradient becomes steeper towards the wall surface of the stenosed artery. Meanwhile, the
magnitude of the maximum velocity decreases as the magnetic field increases. This is because the
magnetic field leads to a rising drag-like force known as Lorentz force. This force has tendency to
reduce the fluid velocity in the boundary layer.

On the other hand, the dimensionless axial velocity for different Hall parameter is illustrated as in
figure 3. It is shown that as Hall parameter increases, the axial velocity will increase. Theoretically,
the influence of the magnetic field may cause the positive and negative ions that bounce back and
forth between the sides of the vessel and induce a Hall current. The combination of the electromotive
force, altered ionic pattern, and currents may potentially cause the blood vessel dilation which
corresponds to the increase in blood flow.

Figure 4 shows the dimensionless mass concentration of LDL at different z for a fixed Schmidt
number, Sc = 5. The results illustrate that at normal artery (at z = 1), the mass concentration is higher
than at the critical height of the stenosis (at z = 3.5). This is because the arterial wall is thicker at the
stenotic region, thus the resistance to LDL is higher than on the non-stenotic region. Hence, the mass
concentration decreases toward the stenosed artery region.

Figure 5 shows the behavior of dimensionless mass concentration for different Hall parameter. It is
shown that as the value of Hall parameter increases, the mass concentration will decrease. We can also
see that the mass concentration fluctuates in most radial part of the artery and it becomes flatter near
the wall surface of the artery. As for various values of magnetic field, M, there is insignificant result
for dimensionless mass concentration.
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Figure 2. Dimensionless axial velocity for Figure 3. Dimensionless axial velocity for
different magnetic field, M. different Hall parameter, m.

S. Conclusions

The problem of blood flow coupled with mass transfer through an arterial stenosis with Hall current
effect has been studied numerically in this paper. The effects of magnetic field, M and Hall parameter,
m, on the axial velocity and mass concentration has been examined in details in this paper. As
conclusion, the present study shows that how the magnetic field plays a role that reduces the velocity
of blood but at the same time, the presence of Hall current increases the velocity. However, the effect
from magnetic field is much more apparent compared to the Hall effect. With the large enough
intensity of applied magnetic field, it is believed that it can streamlining the flow of blood around the
body. Thus, it still needs further investigation to conclude the adequate of the intensity applied
magnetic field in order to have any such effects.

Furthermore, it is evidence from the results that the LDL concentration is lower in the stenotic
region. This finding shows that the possibility of the LDL adheres at the upstream of stenosis, thus
contributes to the enlargement of stenosis. As for different Hall parameter, the concentration having a
fluctuate profile near the axis, and slowly approaches zero at the wall.
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