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Abstract. We present many algorithmic improvements in our early region filling technique,
which in a previous publication was already proved to be correct for all connected digital
pictures. Ours is an integer-only method that also finds all interior points of any given digital
picture by displaying and storing them in a locating matrix. Our filling/locating program is
applicable both in computer graphics and image processing.

1. Introduction

Until recently, two classical algorithms predominated as definite choices to implement either
point location within a given digital picture, or the filling-up of its inside. The first is called
Seed Fill [1,2] and the second Scan Conversion [3,4]. Their strategies are illustrated in Figures
1 and 2, respectively.
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Figure 1: Seed Fill. Figure 2: Scan Conversion.

Seed Fill starts from painting a given pixel called seed and then all of its subsequent
neighbour pixels until meeting boundary conditions. Scan Conversion considers each scan line
and determines its overlap intervals within the region by means of pixel parity. The weak and
strong points of these algorithms were already discussed in Section 2 of [5] and therefore will be
omitted here.
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But none of them is free of failures, and these are caused by the following characteristic
they have in common: the use of continuous Euclidean Geometry constructions within the finite
discrete space of the computer. Of course, at implementing these classical algorithms one can
add several strategies to reduce failures, but challenging regions like nearly degenerate polygons
will always prove that they never achieve perfection for all cases. Needless to test complicate
regions, in [6] the author presents many simple polygons that represent German States, together
with a list of failures of the most known implementations of both Seed Fill and Scan Conversion.

Some minor failures can be often dismissed in many circumstances, but not always. For
instance, microchips are produced in millions out of a single mould. Just one flaw in the mould
will cause a great loss in all senses: time, money, etc. In [5] we illustrate this example and
some others in which perfect filling is crucial. There we introduced an integer-only algorithm
called CoTRA&FUA that finds all interior points of any given digital picture ezactly. They are
displayed and stored in a locating matrix, hence CoTRA&FUA is correct as both filling and
locating procedure.

It works for absolutely any connected digital picture, no matter how complex or intricate it
might be. It is applicable in Computer Graphics and Image Processing even without penalizing
speed, for its complexity is quasi-linear.

In this present paper we show many improvements in the CoTRA&FUA algorithm. Among
other achievements, we rewrote its implemented source code to have just 193 lines, which
represents an approximate 20% reduction compared with the original version of [5]. Moreover,
CoTRA&FUA now count on internal procedures that gave much more clarity to the original
program. Details are given in the next section, but for the readers who already want to test our
program it is available in the link Codes of

https://sites.google.com/site/aefabris

in Matlab p-code. In Section 7 of [5] the reader will find instructions to run it, together with
some examples.

2. Methodology
First of all we need to explain that the input of our program is just an image file in either TIF
or JPG format. It should contain a rectangular canvas of only black and white pixels. It could
have been scanned or created by a mathematical model, but what originated it is unimportant.
Then we construct a mathematical model that results in the given canvas, perform the region
filling and finally generate the filling matrix. This matrix consists of three different entries:
points of the interior, exterior and of the picture itself. In our works they are always graphically
painted in yellow, white and black, respectively.
Since no mathematical model is given beforehand, then we disambiguate situations like the
ones illustrated in Figure 3 by means of a a precise definition of exterior of a digital picture.

Figure 3: Different curves that generate the same black-and-white digital picture (from [5, Fig. 3])
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Technical definitions are given in [5]. Now, COTRA&FUA are both abbreviations of a double-
barreled algorithm. The first stands for Connectivity and Thickness Reduction Algorithm. It
obtains the so-called Lego curve L out of the digital picture. The second stands for Filling Up
Algorithm, which is always exact for any Lego curve, and its interior coincides with the one of
the digital picture. See details in [5].

Now, the main improvements we have got in this present work are the following: 1. Addition
of the internal procedures Enlarge and Tighten to CoTRA; 2. Reduction of the code by working
only with thin instead of locally thin curves (Definitions 3.6 and 3.7 of [5], respectively); 3.
Simplification of the part of the code devoted to the stalk problem (not explained in [5]);

Regarding 1, the procedures FEnlarge and Tighten simplified CoTRA because some of its
parts had to be repeated in order to replace false L-pizels with true ones. Figure 4 illustrates
this problem. It shows a Lego curve in blue and magenta, this latter to enhance its L-pixels
(Definition 5.4 of [5]).
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Figure 4: Zoomed input curve (left) and its Lego curve with false L-pixels (right, [5, Fig. 8]).

Roughly saying, Enlarge replaces each input pixel p by a 4 x 3 rectangle of pixels of the same
colour of p (black or white), and Tighten reverts this process. On the one hand, this introduces
an “a priori” multiplication of the computational time by 12. On the other hand, an enlarged
input curve always corresponds to a thin Lego curve. Consequently, it is already free of false
L-pixels and the problem depicted in Figure 4 does not occur. Then CoTRA runs much much
faster, and this explains the improvement 2.

Regarding 3, first we need to explain what the stalk problem is. For example, consider that
our digital picture D has a pixel p with a unique neighbour ¢ € D, and ¢ is a diagonal neighbour
of p. After enlarging D, p will become a black 4 x 3 rectangle that we call “apple”, depicted at
the left bottom of Figure 5. The stalk is its connection with a diagonal pixel originated from g¢,
this one also expanded to a 4 x 3 matrix of black pixels. Now CoTRA marks the Lego curve L
as in Figure 6, and there we see a 2 x 2-square S of diagonal blue and magenta pixels.

Now L is not thin because of S, and then FUA will mark internal pixels incorrectly after
passing through S. There are some other circumstances in which the stalk problem can happen,
and all of them were already known in [5]. But there we got round this problem by means of
too complicated a strategy, which was then not explained in that work.

Our present version follows a new and much easier strategy: it just makes two copies of the
enlarged D with its Lego curve, then shifts right one copy and left the other, and finally overlaps
them in order to get an thin Lego curve, as shown in Figure 7.
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Figure 5: Apple and stalk. Figure 6: Coloured Lego curve. Figure 7: New strategy.

This new strategy also works faster than our previous version in [5]. Together with the fact
that we now work only with thin Lego curves, computational time has in fact remained almost
the same. Table 1 of [5] summarizes the computational time of 8 tests performed in both Matlab
and Octave. It also applies to our new version since there have not been significant changes in
time performance.

3. Results

We now have a much simpler and shorter filling/locating program compared with our previous
version of [5]. The program is correct for all connected digital pictures, and one of the main
reasons for that is our integer-only approach.

4. Conclusions

Our new filling/locating program requires more memory because dimensions are now multiplied
by 12. However, modern computers do not have space complexity as a limitation any longer.
Hence, increasing space complexity to the detriment of the algorithm is in fact harmless. Time
complexity remained the same, but we have gained in clarity and conciseness.
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