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Abstract. The constitutive relations of piezoelectric ceramics are essentially nonlinear since
the so-called piezoelectric moduli depend on the induced strains. Pioneering papers in these
topics dealt mainly with the isothermal case. In view of applications, however, thermal effects
have to be taken into account in connection with thermo-electric behaviors. Here we briefly
compare continuum theories for nonlinear thermoelettroelasticity. In particular we describe an
extension of Green-Naghdi thermoelasticity theory for an electrically polarizable and finitely
deformable heat conducting elastic continuumn, which interacts with the electric field. In this
theory, unlike other, thermal waves propagate at a finite speed.

1. Introduction
The materials exhibiting couplings between elastic, electric, magnetic and thermal fields have
attracted great attention in the last decades, in connection with increasing wide use in sensing
and actuation. The interest of many researchers turned to mathematical theories of such
materials, in order to give certainty to experimental results and applications. Many applications
have their mathematical formulation within a linear framework, and the theoretical study began
from this context. Foundamental is Nowacki’s paper [1], where a uniqueness theorem for the
solutions of the initial boundary value problems is proved in linear thermopiezoelectricity referred
to a natural state, i.e., with no biasing (or initial) fields. Hence Nowacki [2] also deduced the
generalized Hamilton principle and a theorem of reciprocity of work.

For nonlinear continuous media, in order to find the thermodynamic restrictions on the
constitutive relations for an electrically polarizable and finitely deformable heat conducting
elastic continuum which interacts with the electric field, some authors (e.g. Tiersten [4]) use a
theory based on the Clausius-Duhem entropy inequality, following the standard Coleman-Noll
procedure [3]. Such theories, which we call here theories of type (A), predict an infinite speed of
heat propagation. To avoid such physical contradiction, several papers were written to present
continuum theories capable of predicting thermal waves propagating at finite speeds in various
media, referred as second sound; such theories are often referred as generalized thermoelasticity.

In addition, Rybalko [9] in 2004 showed by experiments that a second-sound (thermal) wave
is accompanied by the appearance of electric induction. This fact demonstrates the need for
second sound theories of an electrically polarizable and finitely deformable heat conducting
elastic continuum which interacts with the electric field.

A group of such theories, referred here as theories of type (B), assumes the Clausius-Duhem
inequality together with a generalized Cattaneo equation [5].
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Another theoretical approach of continuum thermodynamics is proposed by Green-Naghdi
theories [6], [7]. It is based on an integral thermodynamic equality rather than an entropy
inequality and uses the notion of thermal displacement α associated with empirical temperature
T . Such theories have attracted considerable interest and have been applied in many physical
situations, where heat propagation is coupled e.g. with elasticity (see [8]). We refer to them as
theories of the type (C).

In [13] there is an extension of the thermodynamic theories [6], [7] to an electrically polarizable
and finitely deformable heat conducting elastic continuumn. Here we briefly present it and show
the thermodynamic restrictions on response mappings within each type (A)− (C) of theory.

2. Notations and preliminary definitions
Let E denote a three-dimensional Euclidean point space. We consider a body B whose particles
are identified with the positions X ∈ E they occupy in a given reference configuration B.
The material filling B is characterized by a given process class IP (B) of B as a set of ordered
10−tuples of functions on B × IR

p =
(
x(.), θ(.), ϕ(.), ε(.), η(.), τ (.), P (.), q(.), b(.), r(.)

)
∈ IP (B) (1)

defined with respect to B , satisfying the balance laws of linear momentum, moment of
momentum, energy, an entropy inequality or equality and the field equations of electrostatics,
where

• x = x(X, t) is the motion, v = ẋ(X, t) is the velocity,

• F = ∂x
∂X is the deformaton gradient,

• θ = θ(X, t) > 0 is the absolute temperature, g = ∂θ
∂x is the temperature gradient,

• ϕ = ϕ(X, t) is the electric potential,

• EM = −∇xϕ is the (Maxwellian) spatial electric vector

• P = P (X, t) is the polarization vector, π = P /ρ,

• D = ε0E
M + P is the electric displacement (ε0 = vacuum electric permittivity),

• ε = ε(X, t) is the specific internal energy per unit mass,

• η = η(X, t) is the specific entropy per unit mass,

• τ = τ (X, t)
(
S = S(X, t)

)
is the Cauchy stress tensor,

• q = q(X, t) is the spatial heat flux vector,

• b = b(X, t) is the external specific body force per unit mass,

• r = r(X, t) is the radiating heating per unit mass

The free energy function is then defined by

ψ = ε− θη −EM · π (2)

3. Theories of type (A)
3.1. Local balance laws in spatial form
Under suitable assumptions of regularity the usual integral forms of the balance laws of linear
momentum, moment of momentum, energy, the field equations of electrostatics, and the entropy
inequality are equivalent to the spatial field equations

ρv̇ = divτ + P · ∇xEM + ρb , (3)

ρε̇ = τ · ∇v − divq +EM · ρπ̇ + ρr , (4)

EM = −∇xϕ , divD = 0 , (5)

ρη̇ ≥ ρ(r/θ)− div(q/θ) . (6)
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3.2. Constitutive Assumptions in Spatial Form
Let D be an open, simply connected domain consisting of 4−tuples (F , θ,EM , g), and assume
that if (F , θ,EM , g) ∈ D, then (F , θ,EM , 0) ∈ D.

For every p ∈ IP (B) the specific free energy ψ(X, t), the specific entropy η(X, t), the
Cauchy stress tensor T (X, t), the specific polarization vector P (X, t), and the heat flux
q(X, t) are given by continuously differentiable functions on D such that

ψ = ψ(F , θ,EM , g) , (7)

η = η(F , θ,EM , g) , (8)

τ = τ (F , θ,EM , g) , (9)

P = P (F , θ,EM , g) , (10)

q = q(F , θ,EM , g) . (11)

Note that the dependence upon X is not written only for brevity; when the body is not
materially homogeneous it becomes active.

3.3. Dissipation Principle
For any given motion, temperature field and electric potential field, the process p constructed
from the constitutive equations (7)-(11) belongs to the process class (1) of B. Therefore the
constitutive functions (7)-(11) are compatible with the second law of thermodynamics in the
sense that they satisfy the dissipation inequality (6).

3.4. Constitutive restrictions implied by the entropy inequality
The following proposition holds (e.g. see [12]).

The Dissipation Principle is satisfied if and only if the conditions (i− ii) below hold:
(i) The free energy response function ψ(F , θ,EM , g) is independent of g and determines

the response functions for entropy, first Piola-Kirchhoff stress, and polarization vector through
the relations

η(F , θ,EM ) = −∂θψ(F , θ,EM ) (12)

τ (F , θ,EM ) = ρF ∂Fψ(F , θ,EM ) (13)

π(F , θ,EM ) = −∂EMψ(F , θ,EM ) (14)

(ii) The reduced dissipation inequality (Fourier inequality)

q · g ≤ 0 (15)

is satisfied along any process.

4. Theories of type (B)
4.1. Local balance laws in spatial form
They are just (3)-(6) in Section 3.1.
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4.2. Spatial Constitutive Assumptions
Let D be an open and simply connected domain consisting of 5−tuples
(F , θ,EM , q, g) and assume that
if (F , θ,EM , q, g) ∈ D, then (F , θ,EM , 0, 0) ∈ D.

Below we use the time derivative for the heat flux vector

o
q= q̇ −Lq + (trL)q , L = gradv . (16)

The equality Q̇ = JF−1
o
q, where Q is the material heat flux vector, shows that the spatial

counterpart of the material derivative Q̇ is represented by
o
q rather than by q̇.

For every p ∈ IP (B) the specific free energy ψ(X, t), the specific entropy η(X, t), the
Cauchy stress tensor τ (X, t), the polarization vector P (X, t), and the time rate of the heat

flux
o
q (X, t) are given by continuously differentiable functions on D such that

ψ = ψ(F , θ,EM , q, g) , (17)

η = η(F , θ,EM , q, g) , (18)

τ = τ (F , θ,EM , q, g) , (19)

P = P (F , θ,EM , q, g) , (20)

o
q= h(F , θ,EM , q, g) . (21)

Further, the tensors ∂qh(.) and ∂gh(.) are non-singular.

4.3. Dissipation Principle
Just as in Section 3.3.

4.4. Constitutive restrictions implied by the entropy inequality
The following proposition holds (see [5]). The Dissipation Principle is satisfied if and only if the
conditions (i− ii) below hold:

(i) The free energy response function ψ(F , θ,EM , q, g) is independent of the temperature
gradient g and determines the entropy, the Cauchy stress tensor, and the polarization vector
through the relations

η(F , θ,EM , q) = −∂ψ
∂θ

(F , θ,EM , q) , (22)

τ (F , θ,EM , q) = ρF
∂ψ

∂F
(F , θ,EM , q) , (23)

π(F , θ,EM , q) = − ∂ψ

∂EM
(F , θ,EM , q) ; (24)

(ii) The reduced dissipation inequality

ρθ
∂ψ

∂q
(F , θ,EM , q) · q̇ + q · g ≤ 0 , (25)

where
q̇ = h(F , θ,EM , q, g) + [L− (trL)I] q , (26)

is satisfied.
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5. Theories of type (C)
Now we present the extension [13] of Green-Naghdi theories [6], [7] to thermoelectroelasticity,
which is based on an integral thermodynamic equality rather than an entropy inequality and use
the notion of thermal displacement α associated with empirical temperature T . The following
relations hold:

α = α(x, t) =

∫ t

0
T (x, τ) dτ + α0(x), t > 0 , (27)

T = α̇ , β =
∂α

∂X
, γ =

∂T

∂x
, g =

∂θ

∂x
=
∂θ

∂T
γ . (28)

5.1. Local balance laws in spatial form

ρ̇+ ρ divv = 0 ,

ρv̇ = divτ + P · ∇xEM + ρf ,

skwτ + skwTE = 0 , (29)

ρη̇ = ρ(s+ ξ)− divp ,
ρė = τ · ∇v − divq +EM · ρπ̇ + ρr ,

∇x ·D = 0 , EM = −∇xφ ,

where s = r/θ is the external rate of supply of entropy per unit mass and ξ is the internal rate
of supply of entropy per unit mass. Eliminating r between equations (29)4, (29)5 and using the
free energy (2) yields the reduced energy equation

ρ(ψ̇ + θ̇η) + p · g + ρθξ − τ · ∇v + ĖM · P = 0 , (30)

where p = q/θ is the entropy flux vector per unit area.

5.2. Constitutive equations and Dissipation Principle
Constitutive equations are assumed that have the form

ψ = ψ̂(T, β, γ, F , EM ) (31)

η = η̂(T, β, γ, F , EM ) (32)

θ = θ̂(T, β, γ, F , EM ) (33)

ξ = ξ̂(T, β, γ, F , EM ) (34)

p = p̂(T, β, γ, F , EM ) (35)

τ = τ̂ (T, β, γ, F , EM ) (36)

P = P̂ (T, β, γ, F , EM ) (37)

The dissipation inequality
ξ ≥ 0 (38)

holds along any process of B ([10], [11]).
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5.3. Constitutive restrictions implied by the reduced energy equality
The following proposition holds (e.g. see [13]).

Assume constitutive equations of the forms (31), with

q = θp , (39)

∂θ̂

∂T
> 0 , (40)

and let the internal energy response function be defined by (2). Then the validity of the reduced
energy equation (30) along any smooth enough process implies the following conditions for the
response functions

ψ = ψ̂(T, β, F , EM ) , θ = θ̂(T ) , (41)

τ̂ = ρF
∂ψ̂

∂F
, P̂ = −ρ ∂ψ̂

∂EM
, η̂ = −∂ψ̂

∂θ
. (42)

ρ
∂ψ̂

∂β
(T, β, F , EM ) · F Tγ + ρθ̂(T )ξ̂(T, β, γ, F , EM ) + p̂(T, β, γ, F , EM ) · g = 0 . (43)
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