
Emergence of periodic behaviours from randomness

J N Pickton, K I Hopcraft and E Jakeman

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

E-mail: pmxjp5@nottingham.ac.uk

Abstract. This paper discusses how periodic behaviours can arise in discrete systems where
the underlying dynamics are purely random. We consider non-interacting particles moving
randomly on a network of nodes forming a closed loop. The population dynamics describing
the number of particles at a node is a stochastic birth-death process, augmented by particles
migrating randomly to adjacent nodes. This can result in the emergence of periodic behaviours
occurring because of the interaction between the dynamics of the particles and the spatial
structure through which they move. The conditions for this requires the network to comprise
of three or more nodes and the migration to have a preferred direction. Moreover there are
three classes of equilibria for the populations at nodes that depend on the relative values of the
migration and birth rates.

1. Introduction
Periodic effects can be observed in collections of discrete objects, be they fire-flies signalling
to attract mates [1], synapses firing in the brain [2] or photons emerging from a cavity [3].
The identification and origin of wave-like properties becomes difficult to interpret without the
conceptual aid of a field. In this paper we demonstrate how periodic behaviours may emerge in
such systems when the individual components’ dynamics are random. In section 2 we describe
how a system of non-interacting particles moving spontaneously on a network of nodes forming a
loop can display oscillatory behaviours provided two conditions are satisfied – that the network
comprise at least three nodes and that there be a preferred direction for the particles spontaneous
movement. The oscillations so produced are damped and lead to the particles being uniformly
distributed around the network. However, in section 3 we show that the disturbance can be
made to persist if the particles’ dynamics are augmented by a birth-death process operating
at each of the nodes [4]. Then three distinct dynamic equilibria emerge for the distribution of
particles on the network whose adoption is dependent on the relative values of the birth and
migration rates – an incoherent uniform distribution, a coherent propagating wave-packet and
a collapse into a non-propagating state located at a single node.

2. Model
Consider a population of non-interacting particles that are constrained to move around a network
of N nodes forming a closed loop. Such a network can be viewed as a line with periodic boundary
conditions. We impose that the whole system cannot hold any information other than its current
state. This implies that each particle moves through random migration to an adjacent node at
constant rate r, the time between these spontaneous events being independent and exponentially
distributed. These dynamics and the network’s structure can be represented through an N ×N
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Figure 1. (a) Argand diagram of the eigenvalues without a birth and death process. Green
triangles and blue squares denote the eigenvalues for when N = 2, 3 respectively. (b)
Corresponding eigenvalues with the birth-death process.

rate-matrix Q with elements Qij representing the rate at which a particle jumps from state i to
state j and diagonal entries Qii defined such that the rows sum to zero

Qij =


−r if i = j,

r if j ≡ i+ 1 (mod N),

0 otherwise.

(1)

Representing the distribution of particles at time t by the N -dimensional row vector n(t) we
can write down a linear differential equation for the expectation of this distribution 〈n(t)〉

d

dt
〈n(t)〉 = 〈n(t)〉Q =⇒ 〈n(t)〉 = n(0) exp (tQ) . (2)

The behaviour of the system is therefore dependent on the eigenvalues ωk of the rate-matrix

ωk = r
(
ei

2π
N

(k−1) − 1
)
, k = {1, 2, . . . , N}. (3)

The eigenvalue ω1 is zero and corresponds to the equilibrium distribution of the particles, which
is uniform. For k > 1, the eigenvalues are complex provided that N > 2. The imaginary part
of ωk gives rise to oscillations, but because the real part of ωk is negative these are damped.
Thus the system exhibits damped oscillations towards a uniform equilibrium. The complex
spectrum of eigenvalues can be represented graphically as in Figure 1(a) which shows these for
a network comprising 2 and 3 nodes. Eigenvalues lie on a circle of radius r with centre located
on the real axis at −r. If N = 2, then the eigenvalues (0,−2r) are real and no oscillatory
behaviour can occur. If N = 3, two eigenvalues form a complex conjugate pair and can exhibit
oscillations, damped due to the negative real part. If the particles were permitted to migrate
in both directions around the loop the imaginary part of ωk would tend towards the real axis,
eventually becoming zero when the probabilities of moving in both directions are equal. Hence
for oscillations to occur there must be a preferred direction to the migration.

3. Birth and death processes
The damped oscillations can be sustained by augmenting the migration dynamics with a birth-
death process acting at each node. The births occur at rate µ for each particle and thus at a
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Figure 2. (a) The dynamics for N = 3. (b) The rate regimes and corresponding equilibrium
distributions.

combined rate µni for a node containing a population of ni particles. In contrast the combined
death rate occurring at one of the N+(≤ N) nodes hosting particles is µn/N+, proportional to
the total instantaneous population size n on the entire network, with the effect that information
about the global state of the network is introduced to a node and not just local information via
interactions with itself and its nearest neighbours. Thus although the births at a node occur
independently of other nodes, the deaths do not. This non-locality leads to the emergence of
coherent behaviours. A schematic of these dynamics is illustrated in Figure 2(a) for a three
node network. When there exist particles at every node (N+ = N) the dynamics given by
equation (2) are modified according to

d

dt
〈n(t)〉 = 〈n(t)〉

(
Q + µI− µ 1

N
1N×N

)
≡ 〈n(t)〉A =⇒ 〈n(t)〉 = n(0) exp (tA) . (4)

where I is an N ×N identity matrix and 1N×N is a matrix with all elements unity. Comparing
with equation (2) we have two additional terms on the right-hand side corresponding to the
effect of births and deaths respectively. Equation (4) is adjusted when the population at some
of the nodes is zero (N+ < N) to account for the changing death rates. These adjustments
ensure the populations cannot become negative.
The eigenvalues λk of A can be expressed in terms of the eigenvalues (3) of the rate-matrix

λ1 = ω1 = 0, λk = ωk + µ, k = {2, 3, . . . , N}. (5)

All non-zero eigenvalues have been shifted by the birth rate and now lie on a circle with centre
µ− r, see Figure 1(b). This shift dramatically changes how the system behaves compared to the
incoherent uniform state that results when µ = 0. A diagram of the values of µ corresponding
to three different classes of behaviour is given by Figure 2(b). By increasing the birth and death
rates we find that a bifurcation occurs when the eigenvalue λ2 and its conjugate λN cross the
imaginary axis and the uniform state becomes unstable. This happens when

µ = r̂ ≡ r − r cos

(
2π

N

)
. (6)

Increasing the number of nodes in the network causes r̂ to decrease towards zero as N−2, meaning
the change is more likely to occur in larger sized networks. Eigenvalues with positive real part
allow oscillations to emerge from small perturbations from the stationary distribution, growing
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Figure 3. Simulation results of an initial population of 1000 particles in a network of N = 10
nodes in a loop. Both cases started in the stationary distribution with 100 particles at each
node, indicated by green asterisks. Corresponding parameter values are (a) µ = 0.3r and (b)
µ = 3r.

in amplitude until the growth is halted by the restriction of non-negative populations. The
resulting equilibrium behaviour of the system is a wave of particles that propagates around the
loop at a constant speed determined by the imaginary parts of the eigenvalues. Simulation
results demonstrating this behaviour are shown in Figure 3(a).
As the rate µ is increased further, the effect of the boundaries becomes more prominent causing
the wave-packet to propagate at a slower speed. This effect continues until µ = 2r at which
point a second bifurcation occurs and the equilibrium behaviour of system is characterised by a
collapse into a non-propagating state locked at a single node, say node 1. Simulation results are
shown in Figure 3(b). The second bifurcation point is explained by considering what happens
to the small number of particles that migrate to the neighbouring node 2. The equation for the
expected population 〈n2〉 at this node is then

d

dt
〈n2〉 = r〈n1〉 − r〈n2〉+ µ〈n2〉 −

1

2
µ (〈n1〉+ 〈n2〉) =

(
r − 1

2
µ

)
(〈n1〉 − 〈n2〉) . (7)

When µ > 2r the right-hand side is negative and the population at node 2 is driven downwards,
the rate of birth and deaths dominate the rate of the migrations.

4. Conclusion
We have described how periodic behaviours are capable of emerging from discrete systems with
purely random dynamics, specifically particles migrating around a network can exhibit wave-like
properties when a birth-death process is present at each node. Key to the emergent oscillations
was arresting the attenuation with a non-local birth-death process at each node. In order for
wave-like behaviour to emerge the birth-death rates are required to be large enough to amplify
oscillations but small enough to allow particles to migrate.
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