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Abstract. The small-angle scattering form factor of a three-dimensional idealized fragmentation model
based on the concept of renormalization is calculated. The system consists of randomly oriented
microscopic fractal objects whose positions are uncorrelated. It is shown that in the fractal region, the
monodisperse form factor is characterized by a succession of maxima and minima superimposed on a
simple power-law decay, and whose scattering exponent coincide with the fractal dimension of the scatterer.
The results could be used to obtain additional structural information about systems obtained through
fragmentation processes at microscale.

1. Introduction
Fragmentation processes such as those produced by earth’s crust, rocks weathering or explosions,
usually lead to to a fractal [1–3] distribution of number of fragments as a function of their sizes over
a wide range of scales, and a quantification of these processes using the renormalization group approach
has been suggested in [4, 5]. However, an important issue concerns the distribution of fragments at
microscales, since they are responsible for the physical properties, such as hydraulic conductivity or
moisture characteristics in soils [6].

An important technique for investigating the microstructure of various types of systems and which
addresses the issue of size distribution, including the smallest and largest components, is small-angle
scattering (SAS) [7,8] which yields the differential elastic cross section per unit solid angle as a function
of the momentum transfer. This technique has been successfully used in studying the property of self-
similarity across nano- and microscales [2], such as various types of elastomeric membranes [9–12],
cements [13], semiconductors [14], magnetic [15,16] or biological structures [17–19], and therefore the
concept of fractal geometry coupled with SAS technique can give new insights regarding the structural
characteristics of such fractal systems [20–27]. One of the main parameters which can be obtained is the
fractal dimensionD [1]. For a mass fractal it is given by the scattering exponent of the power-law SAS
intensityI(q) ∝ q−D where0 < D < 3.

In this paper, we develop an idealized theoretical model based on renormalization group approach
which could describe fragmentation processes, and calculate the mono- and polydisperse form factor.
We show how to obtain the fractal dimension, and how to estimate the smallest and largest radius of the
fractal from SAS data.

2. Model
We start with a cube of edge lengthl0 (m = 0; initiator) and in the first iteration (m = 1) the number of
cubes which are kept is related to the probabilityf that the initiator will be fragmented into 27 cubes of
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Figure 1. A two-dimensional projection of the fragmentation model. The probability that the cube with
edge lengthl0 (m = 0; initiator) will be fragmented into 27 cubes of edge lengthl1 is f .

edge lengthl1 = l0/3. By calculating the number of fragmented elements and their linear sizes, it can
be shown that the fractal dimension is given by [4]:

D = 3
log(27f)

log 27
, (1)

with 1/27 < f < 1, and thus0 < D < 3. Fig. 1 illustrates the construction of a generic model of
fragmentation, where the sizes of remaining cubes atm-th iteration is given bylm = l0/3

m.

3. Theoretical background on SAS
Here we restrict ourselves to two-phase systems, which are composed from homogeneous units of mass
densityρm. The units are immersed into a solid matrix of pore densityρp. Then [7, 8] we can consider
the system as if the units were frozen in a vacuum and had the density∆ρ = ρm − ρp. The density∆ρ
is called scattering contrast, and thus, the scattering intensity is given by

I(q) = n|∆ρ|2V 2
〈

|F (q)|2
〉

, (2)

wheren is the fractal concentration,V the volume of each fractal, andF (q) the normalized form factor
F (q) = (1/V )

∫

V
e−iq·rdr, obeyingF (0) = 1. The brackets〈· · · 〉 stand for the ensemble averaging

over all orientations ofq. Once a deterministic fractal is composed of the same objects, say,N cubes of
edge lengthl, thenF (q) = ρqF0(ql)/N , with ρq =

∑

j e
−iq·rj the Fourier component of the density of

the cubes, andrj are the center-of-mass positions of cubes. Here the cube form factor of unit edge length
is given by [7]F0(t) = (8/txtytz) sin(tx/2) sin(ty/2) sin(tz/2). Therefore, the scattering intensity
becomesI(q) = I(0)S(q)|F0(ql)|

2/N , with I(0) = n|∆ρ|2V 2 and the structure factor is defined by
S(q) ≡ 〈ρqρ−q〉 /N .

4. Results and Discussion
The monodisperse form factor atm-th iteration can be written as [23,25]Fm(q) = F0(lmq)

∏m
i=1Gi(q)

with m = 1, 2, · · · is the generative function of the fractal and it specifies the positions of the scattering
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Figure 2. SAS from an idealized fragmentation model for two values of the probabilityf . a)
Monodisperse intensity; b) Polydisperse intensity (σr = 0.4). The curves are shifted vertically for
clarity.

cubes inside the fractal. For well-known systems such as Cantor sets or Vicsek fractalsGi(q) has known
analytical expressions [23,25]. Thus, the scattering intensity becomes [25]

Im(q)/Im(0) =
〈

|Fm(q)|2
〉

. (3)

The monodisperse SAS intensity for various values off is shown in Fig. (2a), where it can be seen
that the intensity is characterized by three main regions: a plateau (Guinier region) at lowq (q . 1/l0),
an intermediate (fractal) region at1/l0 . q . 1/lm, and a decay proportional toq−4 (Porod region) at
high q (1/lm . q). These regions allows us to obtain the size of the generator (from the end of Guinier
region), and the smallest size of the scatterers found in the fractal (from the end of the fractal region). In
addition, from the Porod region we can extract information about the specific surface of the fractal.

The value of the fractal dimension can be obtained if we take into account the polydispersity of the
scatterers. Thus, we consider a distribution functionDN (l) of sizes in such a way thatDN (l)dl gives the
probability of finding a fractal whose size falls within(l, l + dl). We consider a log-normal distribution,
and therefore, the polydisperse SAS intensity is given by [25]

Im(q) = n|∆ρ|2
∫

∞

0

〈

|Fm(q)|2
〉

V 2
mDN (l)dl, (4)

whereVm is the total volume at them-th iteration.
Fig. (2b) shows the polydisperse SAS intensity obtained from Fig. (2a) together with Eq. (4). The

results clearly show a smoothing of the scattering curves, as expected, and with the scattering exponent
in the fractal region, being given by Eq. (1).

5. Conclusion
We have developed a model for describing fragmentation processes based on3D fractal and have used
the SAS technique to characterize the microstructural properties of such fragments.

We have calculated the monodisperse and polydisperse SAS intensities, and have shown how to obtain
the smallest and largest sizes inside the fractal. We have shown that the slope of SAS intensity coincide
with the fractal dimension of the fractal, as given by Eq. (1).

The suggested model can be used in understanding various physical properties such as hydraulic
conductivity or moisture characteristics for systems obtained through fragmentation.
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