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Abstract. Purpose: The design and implementation of a computer-based image analysis system 
employing the support vector machine (SVM) classifier system for the classification of Focal 
Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic Resonance (MR) 
images. Materials and Methods: The study comprised 92 patients; each one of them has 
undergone MRI performed on a Magnetom Concerto (Siemens). Typical signs on dynamic 
contrast-enhanced MRI and biopsies were employed towards a three class categorization of the 
92 cases: 40-benign FLLs, 25-Hepatocellular Carcinomas (HCC) within Cirrhotic liver 
parenchyma and 27-liver metastases from Non-Cirrhotic liver.  Prior to FLLs classification an 
automated lesion segmentation algorithm based on Marcov Random Fields was employed in 
order to acquire each FLL Region of Interest. 42 texture features derived from the gray-level 
histogram, co-occurrence and run-length matrices and 12 morphological features were obtained 
from each lesion. Stepwise multi-linear regression analysis was utilized to avoid feature 
redundancy leading to a feature subset that fed the multiclass SVM classifier designed for 
lesion classification. SVM System evaluation was performed by means of leave-one-out 
method and ROC analysis. Results: Maximum accuracy for all three classes (90.0%) was 
obtained by means of the Radial Basis Kernel Function and three textural features (Inverse-
Different-Moment, Sum-Variance and Long-Run-Emphasis) that describe lesion’s contrast, 
variability and shape complexity. Sensitivity values for the three classes were 92.5%, 81.5% 
and 96.2% respectively, whereas specificity values were 94.2%, 95.3% and 95.5%. The AUC 
value achieved for the selected subset was 0.89 with 0.81 – 0.94 confidence interval. 
Conclusion: The proposed SVM system exhibit promising results that could be utilized as a 
second opinion tool to the radiologist in order to decrease the time/cost of diagnosis and the 
need for patients to undergo invasive examination. 

1. Introduction 
Focal liver lesions (FLL) have been considered as very difficult task faced by gastroenterologists and 
hepatologists. The increasing and widespread use of contemporary imaging modalities has led to an 
increase in incidental FLL detection. Thus, the identification of not only malignant liver lesions, but 
benign solid and cystic liver lesions (such as hemangioma, focal nodular hyperplasia, hepatocellular 
adenoma, and hepatic cysts) as well is crucial in differential diagnosis [1].  The majority of FLLs 
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present in non-cirrhotic livers are considered benign. Hemangiomas, focal nodular hyperplasias 
(FNH), and adenomas (HCA) are the most commonly encountered solid benign lesions. On the other 
hand, the most commonly encountered malignant lesions in noncirrhotic livers are metastases. 
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) also occur in cases of 
chronic liver disease [2]. 
Specificity and accuracy optimization of cross-sectional imaging in the context of these incidental 
liver lesions is of importance in avoiding unnecessary biopsies, which may portend a post-procedural 
morbidity of 2.0% to 4.8% and mortality of 0.05%. Ultrasound, computed tomography (CT), and 
magnetic resonance imaging (MRI) are the main liver imaging modalities. A meta-analysis comparing 
contrast-enhanced ultrasound, CT, and MRI in evaluating incidental FLLs demonstrated similar 
diagnostic performance with specificities ranging from 82%-89% and no significant differences in the 
receiver operating characteristic analysis between modalities. Given the lack of ionizing radiation and 
relative non availability of ultrasound contrast in the U.S., Magnetic resonance imaging (MRI) is 
considered a sensitive diagnostic method towards characterization of hepatic cirrhosis that competes or 
outperforms the diagnostic utility of liver biopsies. However, hepatic MRI has some shortcomings in 
detection and classification of focal liver lesions without the need for administration of contrast media, 
despite its superior tissue contrast and the combination of different pulse sequences [3]. A 
comprehensive liver protocol evaluates the parenchyma, vasculature, and biliary system. This in MRI 
is accomplished by way of a combination of single-shot T2-weighted fast spin-echo, gradient echo T1-
weighted in- and opposed-phase, fat suppressed T2-weighted, dynamic pre- and post-contrast T1-
weighted imaging and potentially subtraction of pre from post-contrast image sets [3].  
Computer-aided diagnostic (CAD) systems that include quantitative lesion description and 
classification can provide radiologists or physicians an alternative second opinion towards 
optimization of the diagnostic procedure. The need to strengthen the diagnostic value of non-enhanced 
T1 and T2 sequences, Mayerhoefer et al. has tried to apply texture analysis for an automatic 
classification of liver cyst and hemangiomas showing promising results [4]. A study with more cases 
including more types of lesions is needed though to establish this method as a reliable non-enhanced 
tool for differential diagnosis. In this study, the feasibility of Computer Aided Diagnosis system for 
the classification of Focal Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic 
Resonance images is evaluated.  
The design and implementation of a computer-based image analysis system employing the support 
vector machine (SVM) classifier system for the classification of Focal Liver Lesions (FLLs) on 
routine non-enhanced, T2-weighted Magnetic Resonance (MR) is presented in this study. 

2. Materials and Methods 

2.1. Clinical Data 
Clinical material includes 30 – benign FLLs, 19 – Hepatocellular Carcinomas (HCC) within Cirrhotic 
liver parenchyma and 22 – liver metastases from Non-Cirrhotic liver. All three classes’ diagnosis was 
established by means of typical signs on dynamic contrast-enhanced MRI and biopsies.  

2.2. FLLs Detection 
The lesion detection – segmentation procedure comprise an initialization step that combines the edge 
information derived from Dyadic Wavelet Transform (DWT) and the clustering properties of 
unsupervised Fuzzy C-means (FCM) clustering algorithm followed by Marcov Random Fields (MRF) 
segmentation for final lesion extraction.  
Wavelet transform is a multiresolution analysis technique that has been developed and applied in 
various fields, such as astronomy, finance, quantum physics, signal processing, video compression, 
and image processing. Throughout this study, the 2D redundant DWT was employed for 
multiresolution analysis [5]. The Dyadic Wavelet Transform (DWT) of a function 𝑓(𝑥, 𝑦) ∈ 𝐿!𝑅! is 
the set of functions 𝑊!!

! 𝑓 𝑥, 𝑦 ,𝑊!!
! 𝑓(𝑥, 𝑦) which are respectively the partial derivative along the 
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horizontal and vertical orientation of the convolution of 𝑓(𝑥, 𝑦) by the smoothing function  𝜃(𝑥, 𝑦), 
dilated along a dyadic sequence (2!)!∈! and is given by: 

𝑊!!
! 𝑓(𝑥, 𝑦)

𝑊!!
! 𝑓(𝑥, 𝑦)

= 𝑓 ∙
𝜓!!
!

𝜓!!
! = 2!

𝜕
𝜕𝑥
(𝑓 ∙ 𝜃!!)(𝑥, 𝑦)

𝜕
𝜕𝑦

(𝑓 ∙ 𝜃!!)(𝑥, 𝑦)
 

 

(1) 

where 𝜓!!
!  and 𝜓!!

!  are the analyzing wavelets and j the dyadic scale. We performed the wavelet 
analysis with the DWT using Mallat’s filters [5].  
The FCM algorithm is an iterative clustering algorithm in which each data point is assigned to a 
cluster to a degree specified by a fuzzy membership grade. The procedure for assigning each cluster is 
considered an iterative optimization procedure that minimizes a cost function when pixels close to the 
centroid of their clusters are assigned to high membership values [6]. 
Let V = {v1,. . . , vn} be the set of n image pixels and let C be the number of clusters. The cost or 
objective function for FCM is described as follows: 
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where, m ∈ (1, ∞) controls the fuzziness of the resulting partition, uij denotes the membership of data 
pixel vj to fuzzy cluster i whose value is between [0,1]; µi is the cluster center of fuzzy cluster i, and 

2
- ij µv represents the Euclidian distance between the pixel vi and the cluster center µi.  

The FCM cost function is minimized when high membership values are assigned to pixels whose 
intensities are close to the centroid of their clusters and low membership values are assigned when the 
point is far from the centroid. The membership degrees and the cluster centers are updated according 
to the following formulas: 
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Starting with an initial guess for each cluster center, the FCM converges to a solution for µi 
representing the local minimum or a saddle point of the cost function. Convergence can be detected by 
comparing the changes in the membership function or the cluster center at two successive iteration 
steps.  
MRF modelling combines conditional (local intensity distribution) with contextual (intensity similarity 
within small neighborhoods) information under the Bayesian framework in order to estimate the true 
intensities of the image rather than those based only on the conditional information [7]. It assumes that 
the class probability of a pixel is only dependent on class membership of its spatial neighbors (also 
called lattice) which in turn reduces the possible influence of noise and overlapping structures. The 
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model assumption that the conditional distribution depends on the pixels in the near neighborhood is 
subject to the Bayesian framework which states that the decision rule for labelling an image pixel 
combines the conditional intensity distribution of an individual region with prior knowledge regarding 
that region. 
Given the fact that the observed image y is a realization of a random field Y, x* is the true unknown 
label of the observed pixel, and  x⌢   indicates the estimate of x*, the main objective of the MRF 
segmentation model is to find x⌢  given the observed image y. Let’s assume that P(X) is our prior 
knowledge and P(Y|X) is the probability of realizing the observed image given the regions distribution 
in the image.  Then, in accordance to Bayes theorem: 

)(
)()|()|(

YP
XPXYPYXP =  (6) 

where, P(X|Y) is our posterior probability.  The most widely used conditional intensity distribution is 
the Gaussian distribution, whose function, given the class xs is given by: 
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Where, µs and σs are the distribution parameters of class xs. 
Then, x⌢  can be obtained by taking the posterior’s probability natural logarithm and minimizing its 
negative  resultant: 

Y)))|log(P(X(-minarg
x

x =⌢  (8) 

In our case this optimization task is solved within the deterministic approach (iterated conditional 
mode – ICM). The ICM solves the minimization problem by sequentially updating (i.e. raster scanning 
the image) labels by minimizing the following equation at each pixel s: 
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Where, U(xs)  is the number of pixels in the neighborhood that have color xs. and β is a positive 
constant that controls the interaction between the pixels within the neighborhood. 

  

An Edge Indicator Function (EIF) is computed from the wavelet image in order to locate the edge 
positions that correspond to local maxima in the wavelet domain (Figure 1c). The mean intensity value 
of the area between consecutive edges from the MR images is then calculated and fed as input to the 
FCM algorithm to acquire the initialization image (Figure 1d). The resulted image is applied as initial 
image to the Marcov – Random – Field (MRF) Model towards final lesion segmentation (Figure 1e).  

2.3. Feature Extraction, Selection & Classification 
For each lesion extracted by the aforementioned segmentation procedure, a single Region-of-Interest 
(ROI) was constructed on the image section depicting the maximum lesion diameter. 42 texture 
features derived from the gray-level histogram, co-occurrence and run-length matrices and 12 
morphological features were obtained from each lesion [8-9]. Stepwise multi-linear regression analysis 
was utilized to avoid feature redundancy leading to a feature subset that fed the multiclass SVM 
classifier designed for lesion classification.  
An SVM based classifier [10] is designed to work for two class problems and can be applied to 
linearly or nonlinearly separable data, with or without class data overlap. In the most difficult case of 
nonlinearly separable and overlapped data, which is often the case, data are first transformed from the 
input space to a higher dimensionality feature space, where classes are linearly separable. Then two 
parallel hyperplanes are determined with maximum distance between them and at the same time with 
minimum number of training points in the area between them (also called the margin). Finally, a third 
hyperplane through the middle of the margin is defined, which is the decision boundary of the two 
classes. SVM System evaluation was performed by means of leave-one-out method.  
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Figure 1. MRF segmentation with edge driven FCM initialization. (a) MR 
image with lesion selected, (b) Lesion cropped, (c) Edge Indicator Function, 
(d) FCM initialization, (e) MRF segmentation, (f) Lesion outlined. 

4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015) IOP Publishing
Journal of Physics: Conference Series 633 (2015) 012116 doi:10.1088/1742-6596/633/1/012116

5



	
  
	
  
	
  
	
  
	
  
	
  

3. Results 
Maximum accuracy for all three classes (90.2%) was obtained by means of the Radial Basis Kernel 
Function and three textural features (Inverse-Different-Moment, Sum-Variance and Long-Run-
Emphasis) that describe lesion’s contrast, variability and shape complexity. Sensitivity values for the 
three classes were 92.5%, 81.4% and 96.0% respectively, whereas specificity values were 94.2%, 
95.3% and 95.5%. The AUC value achieved for the selected subset was 0.89 with 0.81 – 0.94 
confidence interval (Table 1). 

Table 1 Confusion matrix of the SVM classifier employing the Inverse-Different-Moment, 
Sum-Variance and Long-Run-Emphasis best feature combination. 

 Multi-Class SVM classification 

Verified FLLs Benign HCC Metastases Sensitivity/ 
Specificity LOO precision 

Benign 37 2 1 92.5 % / 94.2 % 92.5 % 
HCC 3 22 2 81.5 % / 95.3 % 88.0 % 

Metastases 0 1 24 96.2 % / 95.5 % 88.8 % 
Overall 

accuracy     90.0 % 

 

4. Discussion & Conclusion 
The proposed SVM system exhibit promising results that could be utilized as a second opinion tool to 
the radiologist in order to decrease the time/cost of diagnosis and the need for patients to undergo 
invasive examination. 
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