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Abstract. Green’s function based methodologies for elastodynamics in both time and
frequency domains, which can be either numerical or analytical, appear in many branches of
physics and engineering. Thus, the development of exact expressions for Green’s functions
is of great importance. Unfortunately, such expressions are known only for relatively few
kinds of geometry, medium and boundary conditions. In this way, due to the difficulty in
finding exact Green’s functions, specially in the time domain, the present paper presents a
solution of the transient elastodynamic equations by a time-stepping technique based on the
Explicit Green’s Approach method written in terms of the Green’s and Step response functions,
both being computed numerically by the finite element method. The major feature is the
computation of these functions separately by the central difference time integration scheme and
locally owing to the principle of causality. More precisely, Green’s functions are computed only
at t = ∆t adopting two time substeps while Step response functions are computed directly
without substeps. The proposed time-stepping method shows to be quite accurate with distinct
numerical properties not presented in the standard central difference scheme as addressed in
the numerical example.

1. Introduction
The elastodynamic equations appear in a great deal of applications such as geophysics, soil
dynamics, structural dynamics, earthquake engineering, etc [1]. The elastodynamic equations
for a general problem in the time domain can be written, in index notation, as follows:

ρüi − σij,j = bi in Ω× (0, tf ] (1)

where ui, σij,j stand for the displacement and Cauchy stress tensor, respectively and ρ is the
mass density while bi is the given body force. In addition to the above equation, Dirichlet and
Neumann type boundary conditions as well as initial conditions are given by:

ui = ūi on ΓDi × (0, tf ]; σijnj = t̄i on ΓNi × (0, tf ]; ui = u0i; u̇i = v0i in Ω for t = 0 (2)

where ūi, t̄i, u0i and v0i denote prescribed functions with nj being the normal vector components.
Here Eqs. (1)-(2), within the context of elastic wave problems limited to the linear case (i.e.,

σij = Cijkluk,l), are solved numerically by means of the Explicit Green’s approach (ExGA)
method as described in what follows.
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2. Time domain solution
In the ExGA method, the problem domain Ω is partitioned into non-overlapping element
domains, i.e., Ω̄ = Ω̄h = ∪eΩ̄e. Then an approximation of unknown fields (i.e., Green’s functions,
displacements and velocities), in a similar way to that of the semi-discrete FEM formulation
where the space is driscretized independently of the time domain, is employed [2, 3]. Finally,
the ExGA displacement and velocity time integral expressions written in a step-by-step manner
where the time domain is split into N equal time intervals of length ∆t = tk+1− tk = tf/N read
(convolution integrals over the time range [0,∆t] have been approximated by the trapezoidal
rule) [4]:

Uk+1 = H (∆t)MUk + G (∆t) Ūk; U̇k+1 = Ḣ (∆t)MUk + Ġ (∆t) Ūk + M−1Fk+1∆t/2 (3)

where Ūk = MU̇k + Fk∆t/2. In addition, G (∆t) and H (∆t) stand, respectively, for the
Green’s and the Step response matrices for the discrete system with entries representing their
nodal values. Moreover, M and F denote, respectively, the standard FEM mass matrix (here
assumed to be lumped) and load vector.

The continuum equations that govern the Green’s functions and also the Step response
functions are those of the problem under consideration (Eqs. (1)-(2)) considering homogeneous
(null) boundary conditions. Their computations for a given nodal source point, say y = yp,
along an el direction by the semi-discrete FEM are carried out by the following discrete weak
form:∫
Ωh

s

ρvhi ẅ
h
i +vhi,jCijklw

h
k,ldΩ = 0;

∫
Ωh

s

ρ
(
vhi w

h
i − vhi w0i

)
dΩ = 0;

∫
Ωh

s

ρ
(
vhi ẇ

h
i − vhi w̃0i

)
dΩ = 0 (4)

where whi can be either an approximation for the Green’s function (whi (x, t) ≡ Ghil (x,yp, t))
or for the Step response function (whi (x, t) ≡ Hh

il (x,yp, t)) components that when evaluated
at the nodal points gives the entries of a column of the Green’s (or Step response) matrix
[3]. Physically, the Green’s function can be interpreted as the response of the system due to
an initial velocity applied along an el direction defined as w̃0i = δ (x− yp) δil/ρ, whereas the
Step response function is the response of the system due to an initial displacement defined as
w0i = δ (x− yp) δil/ρ. Due to the causality, the response is confined to a region defined as

Ωs =
{
x,y ∈ R2 : ‖x− y‖ ≤ cd∆t

}
⊂ Ω ⊂ R2 called local subdomain that may be very small

once the time step length ∆t is also small which is the case here. Notice that this upper bound
for the local subdomain is defined in terms of the largest wave velocity which is the dilatational
(or primary) one (cd); besides, the discrete local subdomain Ωh

s constructed around the nodal
source point y = yp is slightly larger than the subdomain inferred by the principle of causality
because of the semi-discretization procedure [3].

The semi-discretization procedure of Eq. (4) gives rise to a system of second-order ordinary
differential equation in the time domain. In this sense its solution must be performed adopting,
for instance, time integration schemes. In this work, the well-known Central Difference time
integration scheme [5] is employed to compute Green’s and Step response functions only at time
t = ∆t and in a independent way. The novel feature of the proposed formulation is as follows:

• Green’s functions are computed from t = 0 to t = ∆t/2 and then from t = ∆t/2 to t = ∆t
or, in other words, two time substeps are adopted until reach the desired solution at the
end of the first time interval;

• Step response functions are computed directly from t = 0 to t = ∆t without substeps.

After computing the Green’s and Step response functions locally taking into account all
the nodal source points, the Green’s and Step response matrices, which are very sparse, are
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readily constructed, and the time marching process can be initialized by Eq. (3). The final
task is to show that such time-stepping technique is convergent yielding meaningful results.
To do so, a convergence analysis following the standard literature guideline [5] is performed
and the conclusions are summarized in Fig. 1 as a function of the circular frequency. From
this figure we can conclude that the proposed ExGA method has some distinct features over
the standard Central Difference scheme, namely: (i) the stability constraint obtained from
the spectral radius is not decreased and remains the same as that of the CD scheme; (ii) less
numerical dispersion; and (iii) numerical dissipation is introduced (spectral radius less than one).
It is worthy mentioning that the numerical dissipation in spite of leading to a non-conservative
scheme may be beneficial to the solution of some practical problems to dissipate the inaccurate
higher frequencies as presented later in the example.
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Figure 1. Convergence analysis for the ExGA and standard Central Difference (CD) methods.

3. Results and discussion
In this section, an example consisting of a homogeneous plane strain two-dimensional soil strip
model is considered and the results are analyzed. A sketch of the FE model is depicted in
Fig. 2(left); the time-dependent load and the physical properties are in Fig. 2(right) and Table 1,
respectively. An element length le = 2.5 m and time interval ∆t = 5.5× 10−3 s are adopted.
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Figure 2. Soil strip FE model (left) and time
variation of the load (right).

ν ρ(kg/m3) E(N/m2)
0.25 2000 2.5×108

cd(m/s) cs(m/s) cr(m/s)
388 224 205.54

Table 1. Physical properties
of the model.

The time-histories of the vertical displacement and velocity at point A=(40,0) are plotted,
respectively, in Fig. 3(left) and Fig. 3(middle), considering both the CD and the ExGA methods.
Stress σy time-histories at the Gauss integration point B=(41.25,1.125), close to point A, are
computed, and the results are presented in Fig. 3(right). Analyzing the figures, it can be
observed the presence of high spurious oscillations into the CD results, which can lead to a
misinterpretation. On the other hand, due to the capability of filtering spurious oscillations
by means of the numerical dissipation, the results concerning the ExGA method are free of
oscillations, indicating that accurate and reliable results are achieved. This is better visualized
in Fig. 4 where the Von-Mises stress snapshots of the CD and ExGA methods are compared.
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Figure 3. Comparison of the numerical results: vertical displacement (left), vertical velocity
(middle); and stress σy (right).

Figure 4. Snapshots of the Von-Mises stress at t = 0.385 s: CD(left) and ExGA(right).

4. Conclusions
An improved Explicit Green’s Approach (ExGA) method based on concepts of numerical
local Green’s and Step response functions has been presented in this paper for solving the
elastodynamic equations. The use of time substeps to compute only the Green’s functions in
the ExGA method provided some important numerical properties leading to a very accurate
time-stepping scheme. One such property is the numerical dissipation responsible for filtering
out undesirable spurious oscillations that may arise in some simulations. It is worth pointing
out that the time substeps are applied only once at t = ∆t and both the Green’s and Step
response functions are computed locally due to the causality, resulting at a low computational
cost. The numerical example analyzed here has confirmed the effectiveness and robustness of
the proposed ExGA method. Further research with the goal of incorporating the so-called
fundamental solution (analytical expression) by modifying the standard ExGA formulation [2]
is in progress.
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